Please use this identifier to cite or link to this item:
標題: Ab-initio Study on TMxZn1-xS (TM: Ti2+, Cr2+, Mn2+, Fe2+, Co2+, and Ni2+, x = 0.03, 0.25) Femtosecond Laser and its Electro-Optical Characteristics
利用第一原理計算探討TMxZn1-xS (TM: Ti2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, x = 0.03, 0.25)飛秒雷射與電光特性
作者: Yu-Wei Shiu
關鍵字: First-principles
Defect level
引用: [1] Q. D. Chen, X. F. Lin, L. G. Niu, D. Wu, W. Q. Wang, and H. B. Sun, “Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization,” Optics Letters, Vol. 33, pp. 2559-2561, 2008. DOI: 10.1364/OL.33.002559 [2] X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Applied Physics A, Vol. 80, pp. 237-241, 2005. DOI: 10.1007/s00339-004-2963-9 [3] A. A. Farjo, A. Sugar, S. C. Schallhorn, P. A. Majmudar, D. J. Tanzer, W. B. Trattler, J. B. Cason, K. E. Donaldson, and G. D. Kymionis, “Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology,” American Journal of Ophthalmology, Vol. 120, pp. e5-e20, 2013. DOI: 10.1016/j.ophtha. [4] C. H. Hung, F. Y. Chang, T. L. Chang, Y. T. Chang, K. W. Huang, and P. C. Liang, “Micromachining NiTi tubes for use in medical devices by using a femtosecond laser,” Optics and Lasers in Engineering, Vol. 66, pp. 33-40, 2015. DOI: 10.1016/j.optlaseng.2014.08.001 [5] T. Lim, S. Yang, M. Kim, H. Tchah, “Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis,” American Journal of Ophthalmology, Vol. 141, pp. 833-839, 2006. DOI: 10.1016/j.ajo.2005.12.032. [6] G. Overton, D. A. Belforte, A. Nogee, and C. Holton。Laser Marketplace 2015: Lasers surround us in the Year of Light。Laser Focus World。2015/4/24取自。 [7] G. Overton, D. A. Belforte, A. Nogee, and C. Holton。Laser market to top $12B by 2019, says Strategies Unlimited。Laser Focus World 。2015/4/24取自。 [8] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire Laser, ” Optics Letters, Vol. 16, pp. 42-44 , 1991. DOI: 10.1049/el:20020501 [9] L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition Metal-Doped Zinc Chalcogenides: Spectroscopy and Laser Demonstration of a New Class of Gain Media, ” IEEE Journal of Quantum Electronics, Vol. 32, pp. 885-895, 1996. DOI: 10.1109/3.502365 [10] M. Bredol, and J. Merikhi, “ZnS precipitation: morphology control,” Journal of Materials Science, Vol. 33, pp. 471-476, 1998. DOI: 10.1023/A:1004396519134 [11] G. A. Slack, “Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe2+ Impurities, ” Physical Review B, Vol. 6, pp. 3791-3799 , 1972. DOI: 10.1103/PhysRevB.6.3791 [12] S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, and B. R. Ratna, “Size-induced transition-temperature reduction in nanoparticles of ZnS,” Physical Review B, Vol. 60, pp. 9191-9193, 1999. DOI: 10.1103/PhysRevB.60.9191 [13] S. Mirov, V. Fedorov, I. Moskalev, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” Journal of Luminescence, Vol. 133, pp. 268-275, 2013. DOI: 10.1016/j.jlumin.2011.09.040 [14] C. Tablero, “Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr.” Journal of Applied Physics, Vol. 108, pp. 093114, 2010. DOI: 10.1063/1.3506705 [15] W. Sibbett, A. A. Lagatsky, and C. T. A. Brown,“The development and application of femtosecond laser systems,” Optics Express, Vol. 20, pp 6989-7001, 2012. DOI: 10.1364/OE.20.006989 [16] W. Koechner, “Solid-State Laser Engineering,” Springer Series in Optical Sciences, Vol. 1, pp. 17-22, 2006. DOI: 10.1007/0-387-29338-8 [17] P. Köchert, J. Flügge, C. Weichert, R. Köning and E. Manske, “Phase measurement of various commercial heterodyne He-Ne-laser interferometers with stability in the picometer regime,” Measurement Science and Technology, Vol. 23, pp 074005, 2012. DOI:10.1088/0957-0233/23/7/074005 [18] B. A. Ghani, and M. Hammadi,“Mathematical modeling of rubylaser as a pumping source of a self Q-switched distributed feedback dye laser,” Optics and Lasers in Engineering, Vol. 42, pp 603-612, 2004. DOI: 10.1016/ j.optlasen g.2004.04.002 [19] H. F. Liu and W. F. Ngai, “Nonlinear dynamics of a directly modulated 1.55 μm InGaAsP distributed feedback semiconductor laser,” IEEE Journal of Quantum Electronics, Vol. 29, pp. 1668-1675, 1993. DOI: 10.1109/3.234419 [20] A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” Comptes Rendus Physique, Vol. 8, pp. 1100-1128, 2005. DOI: 10.1016/j.crhy.2007.09.010 [21] E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband Infrared Solid-State Lasers,” IEEE Journal of Quantum Electronics, Vol. 11, pp. 690-712, 2005. DOI: 10.1109/JSTQE.2005.850255 [22] J. O. White, “Parameters for Quantitative Comparison of Two-, Three-, and Four-Level Laser Media, Operating Wavelengths, and Temperatures,” IEEE Journal of Quantum Electronics, Vol. 45, pp. 1213 - 1220, 2009. DOI: 10.1109/JQE.2009.2020607 [23] C. Honninger, R. Paschotta, F. M. Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” IEEE Journal of Quantum Electronics, Vol. 16, pp. 46-56, 1999. DOI: 10.1364/JOSAB.16.000046 [24] G. J. Spuhler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” Journal of the Optical Society of America B, Vol. 16, pp. 376-388, 1999. DOI: 10.1364/JOSAB.16.000376 [25] I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE Joumal of Selected Topics in Quantum Electronics, Vol. 21, pp 1601519-1601538, 2015. DOI: 10.1109/JSTQE.2014.2341589 [26] E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina,” Femtosecond SESAM-modelocked Cr:ZnS laser,” Vol. 20, pp. 28947-28952, 2012. DOI: 10.1364/OE.20.028947 [27] N. Tolstik, E. Sorokin, and I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Optics Letters, Vol. 38, pp. 299-301, 2013. DOI: 10.1364/OL.38.000299 [28] J. Li, M. Chong, J. Zhu, Y. Li, J. Xu, P. Wang, Z. Shang, Z. Yang, R. Zhu, and X. Cao, “35% efficient nonconcentrating novel silicon solar cell,” Applied Physics Letters, Vol. 60, pp. 2240-2242, 1992. DOI:. 10.1063/1.107042 [29] A. Luque and A. Marti, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Physical Review Letters, Vol. 78, pp. 5014-5017, 1997 DOI: 10.1103/PhysRevLett.78.5014 [30] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells,” Journal of Applied Physics, Vol. 32, pp. 46-56, 1961. DOI: 10.1063/1.1736034 [31] J. H. Zhang, J. W. Ding , J. X. Cao, Y. L. Zhang, “Infrared, visible and ultraviolet absorptions of transition metal doped ZnS crystals with spin-polarized bands,” Journal of Solid State Chemistry, Vol. 184, pp. 477-480, 2011. DOI: 10.1016/j.jssc.2010.11.026 [32] Y. Saeed, S. Nazir, A. H. Reshak, and A. Shaukat, “First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1−xTMxS (TM = Fe, Co and Ni),” Journal of Alloys and Compounds, Vol. 508, pp. 245-250, 2010. DOI: 10.1016/j.jallcom.2010.08.079 [33] A. Bercha, Y. Ivonyak, R. Mędryk, W. A. Trzeciakowski, F. Dybała, and B. Piechal, “Photoluminescence excitation measurements using pressure-tuned laser diodes,” Journal of Applied Physics, Vol. 86, pp. 063101-1, 2015. DOI: 10.1063/1.4921859 [34] J. H. Yu, S. H. Kwon, and Z. Petrášek, ” High-resolution three-photon biomedical imaging using doped ZnS nanocrystals,” Nature Materials, Vol. 12, pp. 359-366, 2013. DOI: 10.1038/nmat3565 [35] D. A. Reddy, S. Sambasivam, G. Murali, B. Poornaprakash, R. P. Vijayalakshmi , Y. Aparna, B. K. Reddy, and J. L. Rao,” Effect of Mn co-doping on the structural, optical and magnetic properties of ZnS:Cr nanoparticles,” Journal of Alloys and Compounds, Vol. 537, pp. 208 - 215, 2012. DOI: 10.1016/j.jallcom.2012.04.115 [36] P. Hohenberg , and W. Kohn, ”Inhomogeneous electron gas,” Physical Review B, Vol. 136, pp 864-871, 1964. DOI: 10.1103/PhysRev.136.B864 [37] W. Kohn , and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review B, Vol. 140, pp 1133-1138, 1965. DOI:10.11 03/PhysRev.140.A1133 [38] J. P. Perdew , and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp 8800-8802, 1986. DOI: 10.1103/PhysRevB.33.8800 [39] M. Ernzerhof, and G. E. Scuseria, “Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional,” Journal of Chemical Physics, Vol. 110, pp 5029-5036, 1999. DOI: 10.1063/1.478401 [40] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp 1045-1097, 1992. DOI: 10.1103/RevModPhys.64.1045 [41] A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,” Annalen der Physik, Vol. 17, pp. 132-148, 1905. 10.1002/andp.19053220607 [42] V. Fiorentini and A. Baldereschi, ”Dielectric scaling of the self-energy scissor operator in semiconductors and insulators,” Physical Review B, Vol. 51, pp. 17196, 1995. DOI: 10.1103/PhysRevB.51.17196 [43] C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. V. Stryland, ”Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited],” Optics Express, Vol. 19, pp. 22951, 2011. DOI: 10.1364/OE.19.022951. [44] M. Balu, L.A. Padilha, D.J. Hagan, E.W. Van Stryland, S. Yao, K. Belfield, S.J. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” Journal of the Optical Society of America B, Vol. 25, pp. 159, 2008. DOI: 10.1364/JOSAB.25.000159. 10.1364/JOSAB.18.000313. [45] J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Optics Express, Vol. 13, pp. 9235, 2005. DOI: 10.1364/OPEX.13.009235. [46] G. I. Rusu, P. Prepelita, N. Apetroaei, and G. Popa, “Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump–probe technique,” Journal of the Optical Society of America B, Vol. 30, pp. 3117, 2013. DOI: 10.1364/JOSAB.30.003117. [47] J. He, W. Ji, J. Mi, Y. Zheng, and J. Y. Ying, “Three-photon absorption in water-soluble ZnS nanocrystals,” Applied Physics Letters, Vol. 88, pp. 181114, 2006. DOI: 10.1063/1.2198823 [48] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, “Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Plane-Wave Study, ” Journal of Quantum Chemistry, Vol. 77, pp. 895-910, 2000. DOI: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C [49] Y. H. Huang, W. Q. Jie, and G. Q. Zha, “Band gap, electronic and optical properties of Zn1-xCrxS: An ab initio study, ” Journal of Alloys and Compounds, Vol. 555, pp. 117-122, 2013. DOI: 10.1016/j.jallcom.2012.11.201 [50] H. Huang, W. Q. Jie, and G. Q. Zha, “First principle study on the electronic and magnetic properties in Zn0.75Cr0.25M (M = S, Se, Te) semiconductors, ” Journal of Alloys and Compounds, Vol. 539, pp. 271-275, 2012. DOI: 10.1016/j.jallcom.2012.06.017 [51] S. Nazir, N. Ikram, S. A. Siddiqi, Y. Saeed, A. Shaukat, A. H. Reshak, “First principles density functional calculations of half-metallic ferromagnetism in Zn1-xCrxS and Cd1-xCrxS, ” Current Opinion in Solid State and Materials Science, Vol. 14, pp. 1-6, 2010. DOI: 10.1016/j.cossms.2009.08.00
摘要: In this study, the band structure of ZnS, and TMxZn1-xS (TM: Ti2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, x = 0.03, 0.25) were analysed by performing first-principles calculations based on density functional theory. For the zinc-blende structures, we consider one Zn atom is chosen to be replaced with the TM atom of 8 unit cell ZnS and 64 unit cell ZnS, generated as TMxZn1-xS with 3 % and 25 %, respectively. The 8 unit cell ZnS band gap is 2.14 eV, and Cr2+0.25Zn0.75S band gap is 1.10 eV. Cr2+0.25Zn0.75S generated four defect levels |-3>, |-2>, |-1>, and |0> appeared to be S-3p and TM-3d orbits exchange interaction. Hence, luminous efficiency of Cr2+0.25Zn0.75S is preferred than other compound structures. Degeneracy analysis was performed on the TM0.25Zn0.75S and TM0.03Zn0.97S band structures. Due to high concentration of 25% of TM ions in 8 unit cell ZnS, cause internal periphery of TM0.25Zn0.75S system electronic orbital overlap each other to form a narrow band and the occurrence of the phenomenon of degeneracy. TM0.03Zn0.97S are multi-electron effects of structural causes lattice symmetry reduced, resulting in energy level split occurred within the band of non-degenerate phenomenon.
本論文係以第一原理(First-principles)計算基於密度泛函理論(Density functional theory, DFT)對ZnS與TMxZn1-xS (TM: Ti2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, x = 0.03, 0.25)進行能帶結構進行研究,以探討8原子晶胞ZnS與64原子晶胞ZnS分別以1顆過渡金屬置換1/8顆Zn原子、1/32顆Zn原子,形成置換濃度為3%及25%於ZnS化合物之缺陷能階及電子躍遷行為,8原子晶胞ZnS經計算的能隙值為2.14 eV,而TM0.25Zn0.75S三元化合物中以Cr2+0.25Zn0.75S結構產生缺陷能階數量最多,分別為缺陷能階|-3>、|-2>、|-1>以及|0>且均係由S-3p以及Cr-3d電子軌域發生交互作用所產生,而Cr2+0.25Zn0.75S結構經計算能隙值為1.10 eV。8原子晶胞ZnS化合物由於為正立方體且晶格對稱性佳,導致系統內能階發生簡併現象,而64原子晶胞ZnS化合物因對稱性消除造成系統內獨立之波函數不具有相同能量,導致能帶內能階分裂進而發生非簡併現象。此外,TM0.25Zn0.75S與TM0.03Zn0.97S之簡併/非簡併特性分析方面,8原子晶胞ZnS化合物因加入高濃度25%的TM離子後,會造成TM0.25Zn0.75S系統內部之外圍電子軌道互相重疊,形成窄小的能帶並發生簡併現象,而TM0.03Zn0.97S系統因加入濃度3%的TM離子後,受到多電子結構影響造成晶格對稱性降低,導致能帶內能階分裂而發生非簡併現象。
文章公開時間: 2018-08-26
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.