Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91751
標題: Ab-initio Study on TMxZn1-xSe (TM= Ti2+, Cr2+, Mn2+, Fe2+, Co2+ and Ni2+, x=0.03, 0.25) Femtosecond Laser and its Electro-Optical Characteristics
利用第一原理計算探討TMxZn1-xSe (TM= Ti2+, Cr2+, Mn2+, Fe2+, Co2+ and Ni2+, x=0.03, 0.25)飛秒雷射與電光特性
作者: Pai-Ching Chang
張百慶
關鍵字: First-principles calculation
ZnSe
Band structure
Defect level
第一原理計算
硒化鋅
能帶結構
缺陷能階
引用: [1] X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Applied Physics A, Vol. 80, pp. 237-241, 2005. [2] A. A. Farjo, A. Sugar, S. C. Schallhorn, P. A. Majmudar, D. J. Tanzer, W. B. Trattler, J. B. Cason, K. E. Donaldson, and G. D. Kymionis, “Femtosecond lasers for LASIK flap creation: a report by the American Academy of Ophthalmology,” American Journal of Ophthalmology, Vol. 120, pp. e5-e20, 2013. [3] G. Overton, D. A. Belforte, A. Nogee, and C. Holton。Laser Marketplace 2015: Lasers surround us in the Year of Light。Laser Focus World。2015/4/24取自http://www.laserfocusworld.com/articles/print/volume-51/issue-01/features/laser-marketplace-2015-lasers-surround-us-in-the-year-of-light.html。 [4] By Laser Focus World Editors。Laser market to top $12B by 2019, says Strategies Unlimited。Laser Focus World 。2015/4/24取自http://www.laserfocusworld.com/articles/2015/03/laser-market-to-top-12b-by-2019-says-strategies-unlimited.html。 [5] W. Koechner, “Solid-State Laser Engineering,” Springer Series in Optical Sciences, Vol. 1, pp. 17-22, 2006. [6] J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Applied Physics Letters, Vol. 81, pp. 13-15, 2002. [7] H. Luo, and J. K. Furdyna, “The II-VI semiconductor blue-green laser: challenges and solution,” Semiconductor Science Technology, Vol. 10, pp. 1041-1048, 1995. [8] B. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K.F. Jensen, “Full Color Emission from II-VI Semiconductor Quantum Dot-Polymer Composites,” Advanced Materials, Vol. 12, pp. 1103-1105, 2000. [9] D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic Distribution of Growth Rates within the Ensemblesof Colloidal II-VI and III-V Semiconductor Nanocrystals as Factor Governing Their Photoluminescence Efficiency,” Journal of the American Chemical Society, Vol. 124, pp. 5782-5790, 2002. [10] T. D. Luccio, A. M. Laera, L. Tapfer, S. Kempter, R. Kraus, and B.Nickel, “Controlled Nucleation and Growth of CdS Nanoparticles in a Polymer Matrix,” Joumal of Physical Chemistry B, Vol. 110, pp. 12603-12609, 2006. [11] I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE Joumal of Selected Topics in Quantum Electronics, Vol. 21, pp 1601519-1601538, 2015. [12] B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picque, and T.W. Hansch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl Phys B, Vol. 100, pp. 3-8, 2010. [13] M. L, Cohen, and J. R, Chelikowsky, 'Electronic Structure and Optical Properties of Semiconductors,' Springer-Verlag, pp. 113, 1989. [14] C. Boney, Z. Yu, W. H. Rowl, W. C. Hughes, J. W. Cook, J. F. Schetzina, G. Cantwell, and W. C. Harsch, ' II–VI blue/green laser diodes on ZnSe substrates,' Vac. Sci. Technol. B, Vol. 14, pp. 2259, 1996. [15] L. D. Deloach, R. H. Page, G. D. Wilke, S. A. payne, and W. F. Krupke, “Transition Metal-Doped Zinc Chalcogenides:Spectroscopy and Laser Demonstration of a New Class of Gain Media,” IEEE Journal of Quantum Electronics, Vol. 32, pp. 885-895, 1996. [16] M. N. Cizmeciyan, H. Cankaya, A. Kurt and A. Sennaroglu, 'Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,' Optics Letters, Vol. 34, pp. 3056-3058, 2009. [17] D. V. Linde, K. S. Tinten, and J. Bialkowski,“Laser–solid interaction in the femtosecond time regime,” Applied Surface Science, Vol. 109, pp. 1-10, 1997. [18] W. Koechner, “Solid-State Laser Engineering,” Springer Series in Optical Sciences, Vol. 1, pp. 17-22, 2006. [19] T. H. Maiman,“Stimulated Optical Radiation in Ruby,” Nature, Vol. 187, pp. 493-494, 1960. [20] S. P. Radovanovic, S. Ristic, J. Stasic, and M. Trtica, “A study of Roman glass from Mala Barutana/Belgrade Fortress irradiated with pulsed CO2, Nd:YAG and ruby laser — Comparison,” Journal of Non-Crystalline Solids, Vol. 358, pp. 3048-3056, 2012. [21] H. Liu, Y. Jia, J. R. V. Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Optics Express, Vol. 20, pp. 18620-18629, 2012. [22] C. P. J. Barty, C. L. Gordon, and B. E. Lemoff, “Multiterawatt 30-fs Ti:sapphire laser system,” Optics Letters, Vol. 19, pp. 1442-1444, 1994. [23] Q. Fu, G. Mak, and H. M. V. Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser,” Optics Letters, Vol. 17, pp. 1006-1008, 1992. [24] J. Zhou, G. Traft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Optics Letters, Vol. 19, pp. 1149- 1151, 1994. [25] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature, Vol. 351, pp. 49-50, 1991. [26] B. J. Feldman, and M. S. Feld, “Theory of a High-Intensity Gas Laser,” Physical Review A, Vol. 1, pp. 1375-1396, 1970. [27] B. I. Adetunji, P.O. Adebambo, and G.A. Adebayo, “First principles studies of band structure and electronic properties of ZnSe,” Journal of Alloys and Compounds, Vol. 513, pp. 294-299, 2012. [28] N. Sankar, and K. Ramachandran,' On the thermal and optical properties of ZnSe and doped ZnSecrystals grown by PVT,' Journal of Crystal Growth, Vol. 247, pp. 157-165, 2003. [29] M. Chen, H. Cui, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe,” Journal of Alloys and Compounds, Vol. 597, pp. 124-128, 2014. [30] M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,“ Appl Phys B Vol. 106, pp. 887-892, 2012. [31] J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Optics Letters, Vol. 37, pp. 5021-5023, 2012. [32] B. Amin, and I. Ahmad, “Theoretical investigation of half metallicity in Fe/Co/Ni doped ZnSe material systems,” Journal of Applied Physics, Vol. 106, pp. 093710, 2009. [33] W. Benstaali, S.Bentata, A.Abbad, and A.Belaidi, 'Ab-initio study of magnetic, electronic and optical properties of ZnSe doped-transition metals,' Materials Science in Semiconductor Processing, Vol. 16, pp. 231-237, 2013. [34] P. Hohenberg, and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. 864-871, 1964. [35] W. Kohn, and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. 1133-1138, 1965. [36] J. P. Perdew, and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800-8802, 1986. [37] M. Ernzerhof, and G. E. Scuseria, “Assessment of the Perdew–Burke–Ernzerhof exchange-correlationfunctional,” Journal of Chemical Physics, Vol. 110, pp. 5029-5036, 1999. [38] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045-1097, 1992. [39] Y. Chen, C. Marceau, W. Liu, Z. D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “Elliptically polarized terahertz emission in the forward direction of a femtosecond laser filament in air,” Applied Physics Letters, Vol. 93, pp. 231116-1-231116-3, 2008. [40] Y. H. Huang, W. Q. Jie, and G. Q. Zha, “First principle study on the electronic and magnetic properties in Zn0.75Cr0.25M(M = S, Se, Te) semiconductors,” Journal of Alloys and Compounds, Vol. 539, pp. 271-275, 2012. [41] L. L. Kulyuk, R. Laiho, A. V. Lashkul, E. Lahderanta, D. D. Nedeoglo, N. D. Nedeoglo, I. V. Radevici, A. V. Siminel, V. P. Sirkeli, and K. D. Sushkevich, ' Magnetic and luminescent properties of iron-doped ZnSe crystals,' Physica B, Vol. 405, pp. 4330-4334, 2010. [42] N. Sankar, and K. Ramachandran, ' On the thermal and optical properties of ZnSe and doped ZnSe crystals grown by PVT,' Journal of Crystal Growth, Vol. 247, pp. 157-165, 2003.
摘要: In this study, the band structure and partial density of state of ZnSe, TMxZn1-xSe (TM = Ti2+, Cr2+, Mn2+, Fe2+, Co2+ and Ni2+, x = 0.03, 0.25), were analyzed by performing first-principles calculations on the basis of density functional theory. An 8-atom ZnSe structure exhibited a band gap of 2.40 eV. Regarding Ti2+0.25Zn0.75Se, Cr2+0.25Zn0.75Se, Mn2+0.25Zn0.75Se, Fe2+0.25Zn0.75Se, Co2+0.25Zn0.75Se, and Ni2+0.25Zn0.75Se, the bang gap energy levels were 1.00 eV, 1.42 eV, 1.68 eV, 1.95 eV, 2.06 eV, and 2.24 eV respectively. The Cr2+0.25Zn0.75Se structure generated defect level most, and the defect levels |-2> and |-1>, appeared to be Cr-3d and Se-4p orbitals dominated. A 64-atom ZnSe structure exhibited a band gap of 1.52 eV. Regarding Ti2+0.03Zn0.97Se, Cr2+0.03Zn0.97Se, Mn2+0.03Zn0.97Se, Fe2+0.03Zn0.97Se, Co2+0.03Zn0.97Se and Ni2+0.03Zn0.97Se, the energy levels of the band gaps were 0.24 eV, 0.62 eV, 0.75 eV, 1.07 eV, 1.41 eV, and 1.42 eV respectively. Cr2+0.03Zn0.97Se structural generated defect level most, and the defect levels |1>, |2> and |3> appeared to be Cr-3d and Se-4s orbitals dominated. We observed the narrowing of a transition metal replace in the ZnSe system band gap, which generated the defect level.
本論文係以第一原理(First-principles)計算基於密度泛函理論(Density functional theory, DFT)對ZnSe與TMxZn1-xSe (TM=Ti2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, x=0.03, 0.25)進行能帶結構與缺陷能階研究,8原子晶胞結構ZnSe經計算能隙值為2.40 eV,Ti2+0.25Zn0.75Se、Cr2+0.25Zn0.75Se、Mn2+0.25Zn0.75Se、Fe2+0.25Zn0.75Se、Co2+0.25Zn0.75Se及Ni2+0.25Zn0.75Se化合物經計算能隙值分別為1.00 eV、1.42 eV、1.68 eV、1.95 eV、2.06 eV及2.24 eV,而TMxZn1-xSe化合物中以Cr2+0.25Zn0.75Se結構所產生的缺陷能階最多,分別為缺陷能階|-2>及|-1>係由Cr-3d與Se-4p電子軌域所主導,我們利用64原子晶胞結構ZnSe經計算能隙值為1.52 eV,Ti2+0.03Zn0.97Se、Cr2+0.03Zn0.97Se、Mn2+0.03Zn0.97Se、Fe2+0.03Zn0.97Se、Co2+0.03Zn0.97Se及Ni2+0.03Zn0.97Se化合物經計算能隙值分別為0.24 eV、0.62 eV、0.75 eV、1.07 eV、1.41 eV及1.42 eV,其中以Cr2+0.03Zn0.97Se結構所產生的缺陷能階最多,分別為缺陷能階|1>, |2>及|3>係由Cr-3d與Se-4s電子軌域所主導,可得知利用過渡金屬置換於ZnSe中,使能隙變窄產生缺陷能階提供電子躍遷。
URI: http://hdl.handle.net/11455/91751
文章公開時間: 2018-08-31
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.