Please use this identifier to cite or link to this item:
標題: Caron Nanotorus C360 and C420 with Defects for Hydrogen Storage: An Ab-initio Study
作者: Chih-Yu Lin
關鍵字: ab initio
hydrogen storage
carbon nanotorus
vacancy defect
引用: 1. M. Höök and X. Tang, “Depletion of fossil fuels and anthropogenic climate change,” Energy Policy, Vol. 52, pp. 797-809, 2013. DOI: 10.1016/j.enpol.2012.10.046 2. J. Andrews and B. Shabani, “Re-envisioning the role of hydrogen in a sustainable energy economy,” International Journal of Hydrogen Energy, Vol. 37, pp.1184-1203, 2012. DOI:10.1016/j.ijhydene.2011.09.137 3. L. Schlapbach, “Hydrogen-fuelled vehicles,” Nature, Vol. 460, pp. 809-811, 2009. DOI: 10.1038/460809a 4. G. Wanga, J. Zhou, S. Huc, S. Dong, and P. Wei, “Investigations of filling mass with the dependence of heat transfer during fast filling of hydrogen cylinders,” International Journal of Hydrogen Energy, Vol. 39, pp.4380-4388, 2014. DOI: 10.1016/j.ijhydene.2013.12.189 5. D. J. Durbin and C. M. Jugroot, “Review of hydrogen storage techniques for on board vehicle applications,” International Journal of Hydrogen Energy, Vol. 38, pp. 14595 -14617, 2013. DOI: 10.1016/j.ijhydene.2013.07.058 6. A. Leon, E .J. Knystautas, J. Huota, and R. Schulz, “Hydrogenation characteristics of air-exposed magnesium films,” Journal of Alloys and Compounds, Vol. 345, pp. 158-166, 2002. DOI: 10.1016/S0925-8388(02)00394-8H 7. V. Tozzini and V. Pellegrini, “Prospects for hydrogen storage in graphene,” Phys Chem Chem Phys, Vol. 15, pp. 80, 2013. DOI: 10.1039/C2CP42538F 8. G. Seifert, “Hydrogen on and in carbon nanostructures,” Solid State Ionics, Vol. 168, pp. 265-269, 2004. DOI: 10.1016/j.ssi.2003.02.002 9. R. E. B. Barraza and R. A. G. Lopez, “Clustering of H2 molecules encapsulated in fullerene structures,” Physical Review B, Vol. 66, pp. 155426-1-155426-12, 2002. DOI: 10.1103/PhysRevB.66.155426 10. A. C. Torres, F. DE L. C. Alvarado, J. O. Lopez, and J. S. Arellano, “Hydrogen storage inside a toroidal carbon nanostructure C120: Density functional theory computer simulation,” International Journal of Quantum Chemistry Vol. 110, pp. 2496-2508, 2010. DOI: 10.1002/qua.22711 11. Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, K. Kato, M. Sakata, and T. C. Kobayashi, “Direct Observation of Hydrogen Molecules Adsorbed onto a Microporous Coordination Polymer,” Angewandte Chemie International Edition, Vol. 44, pp. 920-923, 2005. DOI: 10.1002/anie.200461895 12. Y. Yürüm, A. Taralp, and T. N. Veziroglu, “Storage of hydrogen in nanostructured carbon materials,” International Journal of Hydrogen Energy, Vol. 34, pp. 3784-3798, 2009. DOI: 10.1016/j.ijhydene.2009.03.001 13. A.C. Dillon and M.J. Heben, “Hydrogen storage using carbon adsorbents: past, present and future,” Applied Physics A, Vol. 72, pp. 133-142, 2001. DOI: 10.1007/s003390100788 14. R. Ströbela, J. Garcheb, P. T. Moseleyc, L. Jörissenb, and G. Wolfn, “Hydrogen Storage by Carbon Materials,” Journal of Power Sources, Vol. 159, pp. 781-801, 2006. DOI: 10.1016/j.jpowsour.2006.03.047 15. F de L. C. Alvarado, J. O. López, J. S. Arellano, and A. C. Torres, “Hydrogen Storage on Beryllium-Coated Toroidal Carbon Nanostructure C120 modeled with Density Functional Theory,” Advances in Science and Technology, Vol. 72, pp. 188-195, 2010. DOI: 10.4028/ 16. S. Itoh and S. Ihara, “Toroidal form of carbon C360,” Physical Review B, Vol. 47, pp. 1703-1704, 1993. DOI: 10.1103/PhysRevB.47.1703 17. L. Liu, L. Zhang , H. Gao, and J. Zhao, “Structure, energetics, and heteroatom doping of armchair carbon nanotori,” Carbon 49, Vol. 49, pp. 4518-4523, 2003. DOI:10.1016/j.carbon.2011.06.062 18. S. Iijima, “Helical microtubules of graphitic,” Nature, Vol 354, pp. 56-58, 1991. DOI: 10.1038/354056a0 19. R. Saito, M. Fujita, G. Dresselhaus, and M. S Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, Vol. 60, pp. 2204-2206, 1992. DOI: 10.1063/1.107080 20. R. Heyd, and A. Charlier,” Uniaxial-stress effects on the electronic properties of carbon nanotubes,” Physical Review B, Vol. 55, pp. 6820-6824, 1997. DOI: 10.1103/PhysRevB.55.6820 21. Q. Zhao, M. B. Nardelli, and J. Bernholc,” Ultimate strength of carbon nanotubes: A theoretical study,” Physical Review B, Vol. 65, pp. 144105, 2002. DOI: 10.1103/PhysRevB.65.144105 22. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, L. Zhou, K. T. Yue, and S. Zhang, “Mass-production of single-wall carbon nanotubes by arc discharge method,” Carbon, Vol. 37, pp. 1449 -1453, 1999. DOI: 10.1016/S0008-6223(99)00007-X 23. R. Heyd, and A. Charlier,” Uniaxial-stress effects on the electronic properties of carbon nanotubes,” Physical Review B, Vol. 55, pp. 6820-6824, 1997. DOI: 10.1103/PhysRevB.55.6820 24. B. I . Dunlap, “Connecting carbon tubules,” Physical Review B, Vol. 46, pp. 1933-1936. DOI: 10.1103/PhysRevB.46.1933 25. J. Liu, H. Dai, J. H. H. D. T. Colbert, and R. E. Samlley, “Fullerene crop circles,” Nature, Vol. 385, pp. 27, 1997. DOI: 10.1038/385780b0 26. D. H. Oh, J. M. Park, and K. S. Kim, “Structures and electronic properties of small carbon nanotube tori,” Physical Review B, Vol. 62, pp. 3, 2000. DOI: 10.1103/PhysRevB.62.1600 27. I. L. Chang and J. W. Chou, “A molecular analysis of carbon nanotori formation,” Journal of Applied Physics, Vol. 112, pp. 063523, 2012. DOI: 10.1063/1.4754538 28. M. Sano, A. Kamino, J. Okamura, and S. Shinkai, “Ring Closure of Carbon Nanotubes,” Science, Vol. 293, pp. 17, 2001. DOI: 10.1126/science.1061050 29. L. Song, L. Ci, L. Sun, C. Jin, L. Liu, W. Ma, D. Liu, X. Zhao, S. Luo, Z. Zhang, Y. Xiang, J. Zhou, W. Zhou, Y. Ding, Z. Wang, and S. Xie, “Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical Vapor Deposition,” Advanced Materials, Vol. 18, pp. 1817-1821, 2006. DOI: 10.1002/adma.200502372 30. N. Komatsu, T. Shimawaki, S. Aonuma, and T. Kimura, “Ultrasonic isolation of toroidal aggregates of single-walled carbon nanotubes,” Carbon, Vol. 44, pp. 2089–2108, 2006. DOI: 10.1016/j.carbon.2006.04.025 31. B. Dong, X. Bai, Y. Wang, L. Xu, J. Chen, D. Li, and H. Song, “ Silver nanotorus and nanoparticles on silica wafer: optical properties and investigation of PVA in the formation process,” Journal of Materials Science: Materials in Electronics, Vol. 22, pp. 64-71, 2011. DOI: 10.1007/s10854-010-0085-z 32. W. Orellana, “Reaction and incorporation of H2 molecules inside single-wall carbon nanotubes through multivacancy defects,” Physical Review B, Vol. 80, pp.075421-1-075421-5, 2009. DOI: 10.1103/PhysRevB Vol.80.075421 33. J. A. Robinson, E. S. Snow, Stefan C. Badescu, T. L. Reinecke, and F. K. Perkins, “Role of defects in single-walled Carbon nanotube chemical sensors,” Nano Letter, Vol. 6, pp. 1747-4751, 2006. DOI: 10.1021/nl0612289 34. A. V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen, and J. Keinonen, “Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes,” Physical Review B, Vol. 63, pp. 245405, 2001. DOI: 10.1103/PhysRevB.63.245405 35. L. Chen, K. Xia, L. Huang, L. Li, L. Pei, and S. Fei, “Facile synthesis and hydrogen storage application of nitrogen-doped carbon nanotubes with bamboo-like structure,” International Journal of Hydrogen Energy, Vol. 38, pp. 3297-3303, 2013. DOI: 10.1016/j.ijhydene.2013.01.055 36. Z. Zhou, X. Gao, J. Yan, and D. Song i, “Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations,” Carbon, Vol. 44, pp. 939–947, 2006. DOI: 10.1016/j.carbon.2005.10.016 37. E. Durgun, Y. R. Jang, and S. Ciraci, “Hydrogen storage capacity of Ti-doped boron-nitride and B/Be-substituted carbon nanotubes,” Physical Review B, Vol. 76, pp. 073413, 2007. DOI: 10.1103/PhysRevB.76.073413 38. W. Liu, Y. H. Zhao, Y. Li, Q. Jiang, and E. J. Lavernia, “Enhanced Hydrogen Storage on Li-Dispersed Carbon Nanotubes,” Journal of Physical Chemistry C, Vol. 113, pp. 2028-2033, 2009. DOI: 10.1021/jp8091418 39. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, “Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature,” Science, Vol. 286, pp. 1127, 1999. DOI: 10.1126/science.286.5442.1127 40. R. Bhowmick, S. Rajasekaran, D. Friebel, C. Beasley, L. Jiao, H. Ogasawara, Hongjie Dai, B. Clemens, and A. Nilsson, “Hydrogen Spillover in Pt-Single-Walled Carbon Nanotube Composites: Formation of Stable C-H Bonds,” Journal of the American Chemical Society, Vol. 133, pp. 5580-5586, 2011. DOI: 10.1021/ja200403m 41. D. Silambarasan, V. J. Surya, V. Vasu, and K. Iyakutti, “One-step process of hydrogen storage in single walled carbon nanotubes-tin oxide nano composite,” International Journal of Hydrogen Energy, Vol. 38, pp. 4011-4016, 2013. DOI: 10.1016/j.ijhydene.2013.01.129 42. Y. W. Wen, H. J. Liu, L. Pan, X.J. Tan, H. Y. Lv, J. Shi, and X. F. Tang, “A Triplet Form of (5,0) Carbon Nanotube with Higher Hydrogen Storage Capacity,” Journal of Physical Chemistry C, Vol. 115, pp. 9227-9231, 2011. DOI: 10.1021/jp1120433 43. S. M. Lee and Y. H. Lee, “Hydrogen storage in single-walled carbon nanotubes,” Applied Physics Letters, Vol. 76, pp. 2877-2879, 2000. DOI: 10.1063/1.126503 44. Y. Ma, Y. Xia, M. Zhao, M. Ying, X. Liu, and P. Liu, “Collision of hydrogen atom with single-walled carbon nanotube: Adsorption, insertion, and healing,” Journal of Chemical Physics, Vol. 15, pp. 17, 2001. DOI: 10.1063/1.1409541 45. F de L. C. Alvarado, J. O. López, J. S. Arellano, and A. C. Torres, “Hydrogen Storage on Beryllium-Coated Toroidal Carbon Nanostructure C120 modeled with Density Functional Theory,” Advances in Science and Technology, Vol. 72, pp. 188-195, 2010. DOI: 10.4028/ 46. L. Türker, I. Eroglu, M. Yücel, and U. Gündüz, “Hydrogen storage capability of carbon nanotube Be@C120,” International Journal of Hydrogen Energy, Vol. 29, pp. 1643-1647, 2004. DOI: 10.1016/j.ijhydene.2004.02.017 47. Lemi Türker and Selc¸uk Gümüs, “Hydrogen storage capacity of Mg@C120 system,” Journal of Molecular Structure, Vol. 719, pp. 103-107, 2005. DOI: 10.1016/j.theochem.2004.12.037 48. L. Türker, “Hydrogen storage capability of Se@C120 system,”International Journal of Hydrogen Energy, Vol. 32, pp. 1933-1938, 2007. DOI: 10.1016/j.ijhydene.2006.10.043 49. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, Vol. 136, pp. B864, 1964. DOI: 10.1103/PhysRev.136.B864 50. J. P. Perdew and Y. Wang, “Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800 51. J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. DOI: 10.1103/PhysRevB.46.6671 52. J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. DOI: 10.1103/PhysRevLett.77.3865 53. M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045-1097 (1992). DOI:10.1103/RevModPhys.64.1045 54. T. A. Halgren and W. N. Lipscomb, “The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States,” Chemical Physics Letters, Vol. 49, pp. 225-232, 1977. DOI: 10.1016/0009-2614(77)80574-5 55. E. Yazgan, E. Taşci, O. B. Malcioğlu, and S. Erkoc¸, “Electronic properties of carbon nanotoroidal structures,” Journal of Molecular Structure, Vol. 681, pp. 231-234, 2004. DOI: 10.1016/j.theochem.2004.05.029 56. B. J. Cox and J. M. Hill, “New Carbon Molecules in the Form of Elbow-Connected Nanotori,” Journal of Physical Chemistry C, Vol. 111, pp.10855-10860, 2007. DOI: 10.1021/jp0721402 57. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles Simulation: Ideas, Illustrations and the CASTEP code,” Journal of Physics. Condensed Matter, Vol. 14, pp. 2717-2744, 2002. DOI: 10.1088/0953-8984/14/11/301 58. S. Itoh and S. Ihara, “Isomers of the toroidal forms of graphitic carbon,” Physical Review B, Vol. 49, pp.19,1994. DOI: 10.1103/PhysRevB.49.13970 59. J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, “Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures,” Journal of Chemical Physics, Vol. 119, pp. 2376, 2003. DOI: 10.1063/1.1582831 60. R. G. Amorim, A. Fazzio, A. Antonelli, F. D. Novaes, and and Antônio J. R. da Silva, “Divacancies in Graphene and Carbon Nanotubes,” Nano Lett, Vol. 7, pp.8, 2007. DOI: 10.1021/nl071217v
摘要: This work examined the structures of C360 and C420 carbon nanotorus that passes two-, four-, and six-vacancy defects by using ab initio calculations. By analyzing the energy barrier for molecular hydrogen to get a physical absorption to C360 and C420 carbon nanotorus the most favorable structure for C360 and C420 being used as a hydrogen storage material could be proposed.The results revealed that C360 carbon nanotorus with four-vacancy defects provided the lowest energy barrier at 3.69 eV, allowed molecular hydrogen to reach vacancy defect via path ε.For C420, the lowest energy barrier was obtained as hydrogen passed through C420 with two-vacancy defects via path η, which was approximately 1.49 eV.
本研究係利用第一原理(ab initio)計算密度泛函計算含有雙孔空位缺陷(Vacancy defect)、肆孔空位缺陷以及陸孔空位缺陷的碳微環C360和C420結構。藉由氫分子與含有缺陷之碳微環儲氫結構之交互作用能,分析氫分子經由空位缺陷進入碳微環儲氫結構所需之能障,找尋能有效降低穿越碳微環能障的結構。含有空位缺陷的碳微環C360結構中,能障最低的結構為具有肆孔空位缺陷之碳微環C360結構,氫分子經由路徑ε穿過碳微環C360表面之空位缺陷所需能量為3.69 eV。另外,含有空位缺陷的碳微環C420結構中,能障最低的結構為具有雙孔缺陷之碳微環C420結構,氫分子經由路徑η進入儲氫結構穿過碳微環C420表面之空位缺陷所需能量趨近於1.49 eV。
文章公開時間: 2018-07-30
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.