Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91758
標題: Effect of Temperature on Energy Loss and Internal Friction in Nanocrystalline Metal Thin Films
奈米晶系金屬薄膜能量損耗之探討
作者: Yu-Ting Wang
王瑜婷
關鍵字: internal friction
nanocrystalline
copper thin film
energy loss
grain size
twin crystal
grain boundary
activation energy
internal friction peak
grain boundary diffusion
dislocation movement
內耗
奈米晶系
銅薄膜
能量損耗
晶粒大小
雙晶
晶界
活化能
內耗峰值
晶界擴散
差排移動
引用: [1] W. Nix, 'Mechanical properties of thin films,' Metallurgical Transactions A, vol. 20, pp. 2217-2245, 1989. [2] M. S. Blanter, et al., Internal Friction in Metallic Materials: A Handbook: Springer, 2007. [3] A. S. Nowick and B. S. Berry, Anelastic relaxation in crystalline solids. New York: Academic Press, 1972. [4] B. J. Lazan, Damping of materials and members in structural mechanics: Pergamon Press, 1968. [5] V. Palmov, Vibrations of Elasto-Plastic Bodies: Springer, Berlin, 1998. [6] S. W. Shaw, 'On the dynamic response of a system with dry friction,' Journal of Sound and Vibration, vol. 108, pp. 305-325, 1986. [7] Y. K. Wen, 'Equivalent Linearization for Hysteretic Systems Under Random Excitation,' Journal of Applied Mechanics, vol. 47, pp. 150-154, 1980. [8] W. S. Gorsky, 'Theorie der elastischen Nachwikrung in ungeordneten Mischkristallen (Elastische Nachwirkung zweiter Art),' Physik. Zeits. Sowjetunion, vol. 8, pp. 457-471, 1935. [9] J. P. Hirth and J. Lothe, Theory of dislocation. NY: McGRAW-HILL, 1968. [10] D. Hull and D. J. Bacon, Introduction to Dislocation, 3 ed. Pergamon: Oxford, 1984. [11] T. S. K?, 'Micro-mechanism of grain boundary relaxation in metals,' Scripta Metallurgica et Materialia, vol. 24, pp. 347-352, 1990. [12] A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials: OUP Oxford, 2006. [13] J.W. Morris, Jr., 'Chapter 4 - Defects in Crystals,' in A Survey of Materials Science I. Structure, 2007, pp. 79-109. [14] T. Surholt and C. Herzig, 'Grain boundary self-diffusion in Cu polycrystals of different purity,' Acta Materialia, vol. 45, pp. 3817-3823, 1997. [15] R. Schaller, et al., Mechanical spectroscopy Q-1 2001: with applications to materials science. Zuerich-Uetikon, Switzerland; Enfield, NH: Trans Tech Publications, 2001. [16] K. Maier, 'Self-diffusion in copper at “low” temperatures,' physica status solidi (a), vol. 44, pp. 567-576, 1977. [17] D.-h. Choi and W. D. Nix, 'Anelastic behavior of copper thin films on silicon substrates: Damping associated with dislocations,' Acta Materialia, vol. 54, pp. 679-687, 2006. [18] G. Pezzotti and K. Ota, 'Anelastic Grain-Boundary Sliding in Ceramics. II. Polycrystals with Glassy Boundaries,' J. Phys. IV France, vol. 06, pp. C8-357-C8-360, 1996. [19] D.-h. Choi, et al., 'Anelasticity and damping of thin aluminum films on silicon substrates,' Microelectromechanical Systems, Journal of, vol. 13, pp. 230-237, 2004. [20] Y. Nishino, et al., 'Microplasticity of copper thin films on silicon substrates,' Philosophical Magazine Letters, vol. 81, pp. 743-750, 2001. [21] Y. Nishino and K. Ikai, 'Internal friction study of microplasticity in polycrystalline gold thin films,' Materials Science and Engineering: A, vol. 442, pp. 347-351, 2006. [22] K. Uozumi, et al., 'Internal friction of vacuum-deposited silver films,' Journal of Applied Physics, vol. 49, pp. 249-252, 1978. [23] William D. Nix, “Mechanical properties of thin films,” class notes for a graduate class at Stanford University (2005). Available from http://imechanica.org/node/530. [24] J. N. Florando and W. D. Nix, 'A microbeam bending method for studying stress–strain relations for metal thin films on silicon substrates,' Journal of the Mechanics and Physics of Solids 53 (3), 619-638 (2005). [25] Dr. Dallas Kingsbury, “Constant stress beams,” Integrated Mechanical Testing Laboratory, Arizona State University. Available from http://enpub.fulton.asu.edu/imtl/HTML/Manuals/MC106_Constant_Stress.htm. [26] C. J. Tong, 'Study of Energy Loss in Thin Metal Films,' Ph.D. Dissertation, Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung, 2012. [27] Y. T. Wang, et al., 'Novel full range vacuum pressure sensing technique using free decay of trapezoid micro-cantilever beam deflected by electrostatic force,' Microsystem Technologies, vol. 18, pp. 1903-1908, 2012. [28] T. C. Hu, F. C. Hsu, M. T. Lin, C. J. Tong, and Y. T. Wang, 'Design and Development of Internal Friction and Energy Loss Measurement on Nanocrystalline Aluminum Thin Films', in MEMS and Nanotechnology, Volume 6, edited by Gordon A. Shaw, Barton C. Prorok, and LaVern A. Starman (Springer New York, 2013), pp. 141-147. [29] B. S. Berry and W. C. Pritchet, 'Defect studies of thin layers by the vibrating-reed technique,' Journal De Physique IV, vol. 42, pp. C5-1111-C5-1121, 1981. [30] B. S. Berry and W. C. Pritchet, 'Effect of interdiffusion on the elasticity and internal friction of compositionally modulated copper-nickel thin films,' Thin Solid Films, vol. 33, pp. 19-28, 1976. [31] T. -S. K?, 'Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals,' Physical Review, vol. 71, pp. 533-546, 1947. [32] Abbaschian R., Abbaschian L., Reed-Hill R.E., “Physical Metallurgy Principles,” (4ed., CL, 2008)(ISBN 0495082546). [33] H. Van Swygenhoven, et al., 'Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni,' Acta Materialia, vol. 47, pp. 3117-3126, 1999. [34] M. Hatherly and A. S. Malin, 'Deformation of copper and low stacking-fault energy, copperbase alloys,' Metals Technology, vol. 6, pp. 308-319, 1979. [35] N. J. Park and D. P. Field, 'Predicting thickness dependent twin boundary formation in sputtered Cu films,' Scripta Materialia, vol. 54, pp. 999-1003, 2006. [36] A. H. Barnes and C. Zener, 'Internal Friction at High Temperatures,' Physical Review, vol. 58, pp. 87, 1940. [37] C. Zener, 'Theory of the Elasticity of Polycrystals with Viscous Grain Boundaries,' Physical Review, vol. 60, pp. 906-908, 1941. [38] Q. Tian, et al., 'Internal friction behavior of twin boundaries in tensile-deformed Mn–15 at.% Cu alloy,' Materials Science and Engineering: A, vol. 442, pp. 433-438, 2006. [39] F. C. Hsu, et al., 'The study of internal friction in nanocrystalline Ag and Au thin films,' Thin Solid Films. In Press, Corrected Proof (2014). [40] B. S. Berry, 'Anelastic relaxation and diffusion in thin layer materials,' in Diffusion Phenomena in Thin Films and Microelectronic Materials, D. Gupta and P. S. Ho, Eds., ed NJ: Noyes Data Corporation, 1988, pp. 73-145. [41] M. Prieler, H. G. Bohn, W. Schilling, and H. Trinkaus, 'Grain boundary sliding in thin substrate-bonded Al films,' Journal of Alloys and Compounds, vol. 211/212, pp. 424-427, 1994. [42] K. Fujiwara, H. Tanimoto, and H. Mizubayashi, 'Elasticity study of very thin Cu films,' Materials Science and Engineering A, vol. 442, pp. 336-341, 2006. [43] Y. Nishino and S. Asano, 'Amplitude-Dependent Internal Friction and Microplasticity in Thin-Film Materials,' Journal De Physique IV, vol. 6, pp. C8-783-C8-786, 1996. [44] Y. Nishino, Y. Ota, and T. Kawazoe, 'Microplasticity of cooper thin films on silicon substrates,' Philosophical Magazine Letters, vol. 81, pp. 743-750, 2001. [45] Y. Nishino and K. Ikai, 'Intrenal friction study if microplasticity in polycrystalline gold thin films,' Materials Science and Engineering A, vol. 442, pp. 347-351, 2006.
摘要: This study employed a temperature controlled capacitance-based system to measure the mechanical behaviors associated with temperature dependent energy loss in ultra-thin copper (Cu) films. Thin Cu films are widely used in electronic interconnections and micro-electromechanical systems (MEMS); however, most studies have focused on temperature-dependent dynamic properties at larger scales. This study designed a paddle-like test specimen with a Cu film deposited on the upper surface in order to investigate the real-time temperature-dependent mechanical properties of thin metal films at elevated temperatures of up to 160 °C under high vacuum conditions at very small scales. Real-time energy loss was measured according to the decay in oscillation amplitude of a vibrating structure following resonant excitation. Film thickness and grain size were closely controlled with respect to the dynamic properties of the films. It was also determined that the internal friction of ultra-thin metal films is strongly dependent on film thickness and temperature.
在半導體、微機電系統、太陽能電池製程裡,不論是在封裝連接導線或是系統導電層結構上都可看到銅薄膜廣泛的被應用,有許多學者對於銅材料之機械性質進行各種不同的研究與討論,然而目前為止研究成果大部分還是著重於靜態機械性質及較大尺度之範圍,因此,本研究針對奈米尺度銅薄膜,在高真空環境下利用電容值量測系統搭配即時溫度(Real-time)系統來做薄膜內耗之量測,以非接觸式靜電力電極做為驅動,使用等應力懸臂樑結構試件承載奈米尺度之金屬薄膜,利用試件做振動與自由衰減之滯彈性行為來研究內部能量損耗機制。本論文結果顯示,受薄膜厚度及溫度變化關係,奈米薄膜在自由振盪之滯彈性行為下,內部微結構產生之晶粒大小、雙晶、晶界數量變化,以及薄膜加溫受熱後產生之活化能與內耗峰值,使晶界摩擦、晶界擴散、差排移動等行為機制成為影響薄膜內部能量損耗之原因。
URI: http://hdl.handle.net/11455/91758
文章公開時間: 10000-01-01
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.