Please use this identifier to cite or link to this item:
標題: Double-walled Carbon Nanotube(6,6)/(11,11) with Defects for Hydrogen Storage: First-princles Calculation
作者: Chun-Hsiang Chan
關鍵字: First-princles calculation
hydrogen storage
carbon nanotube
multi-vacancy defect
引用: 1. G. P. Peters, G. Marland, C. L. Quere, T. Boden, J. G. Canadell and M. R. Raupach,”Rapid growth in CO2 emissions after the 2008–2009 global financial crisis,” Nature Climate Change, Vol. 2, pp. 2-4, 2012. DOI:10.1038/nclimate1332 2. H. Gerbelova, F. Amorim, A. Pina, M. Melo, C. Ioakimidis, and P. Ferrao, “Potential of CO2 (carbon dioxide) taxes as a policy measure towards low-carbon Portuguese electricity sector by 2050,” Energy, Vol. xxx, pp.1-7, 2014. DOI: 10.1016/ 3. J. Zheng, J. Guo, J. Yang ,Y. Zhao, L. Zhao, X. Pan, J. Ma and L. Zhang,” Experimental and numerical study on temperature rise within a 70 MPa type III cylinder during fast refueling,” International Journal of Hydrogen Energy, Vol. 38, pp. 10956-10962, 2013. DOI 10.1016/j.ijhydene.2013.02.053 4. L. Schlapbach and A. Zuttel,” Hydrogen-storage materials for mobile applications,” Nature, Vol. 414, pp. 353 (2001). DOI: 10.1038/35104634 5. A. Leon, E.J. Knystautas, J. Huota, R. Schulz,“Hydrogenation characteristics of air-exposed magnesium films,” Journal of Alloys and Compounds, Vol. 345, pp. 158-166, 2002. DOI: 10.1016/S0925-8388(02)00394-8H. 6. H. Cheng, L. Chen, A. C. Cooper, X. Sha and G. P. Pez,” Hydrogen spillover in the context of hydrogen storage using solid-state materials,”Energy and Environment Science, Vol. 1, pp. 338-354, 2008. DOI: 10.1039/b807618a 7. G. Seifert,” Hydrogen on and in carbon nanostructures,” Solid State Ionics, Vol. 168, pp. 265-269, 2004. DOI: 10.1016/j.ssi.2003.02.002 8. R. E. B.-Barraza and R. A. G.-Lopez,” Clustering of H2 molecules encapsulated in fullerene structures,” Physical Review B, Vol. 66, pp. 155426-1-155426-12, 2002. DOI: 10.1103/PhysRevB.66.155426 9. A. C.-Torres, F. DE L. C.-Alvarado, J. O.-Lopez and J. S. Arellano,” Hydrogen storage inside a toroidal carbon nanostructure C120: Density functional theory computer simulation,” International Journal of Quantum Chemistry Vol. 110, pp. 2496-2508, 2010. DOI: 10.1002/qua.22711 10. Y. Kubota, M. Takata, R. Matsuda, R. Kitaura, S. Kitagawa, K. Kato, M. Sakata, and T. C. Kobayashi,” Direct Observation of Hydrogen Molecules Adsorbed onto a Microporous Coordination Polymer,” Angewandte Chemie International Edition, Vol. 44, pp. 920-923, 2005. DOI: 10.1002/anie.200461895 11. R. Strobela, J. Garcheb, P. T. Moseleyc, L. Jorissenb and G. Wolfn,” Hydrogen Storage by Carbon Materials,” Journal of Power Sources, Vol. 159, pp. 781-801, 2006. DOI:10.1016/j.jpowsour.2006.03.047 12. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne,” First-principles Simulation: Ideas, Illustrations and the CASTEP code,” Journal of Physics. Condensed Matter, Vol. 14, pp. 2717-2744, 2002. DOI:10.1088/0953-8984/14/11/301 13. G. Niranjan, P. Max, F. George, K.-S. Dominic and A. Jan,” A Generalized Synchronous Transit Method for Transition State Location,” Computational Materials Science, Vol. 28, pp. 250-258, 2003. DOI:10.1016/S0927-0256(03)00111-3 14. S. Iijima,” Helical microtubules of graphitic,” Nature, Vol 354, pp. 56-58, 1991. DOI: 10.1038/354056a0 15. R. Saito, M. Fujita, G. Dresselhaus, and M. S Dresselhaus,” Electronic structure of chiral graphene tubules,” Applied Physics Letters, Vol. 60, pp. 2204-2206, 1992. DOI: 10.1063/1.107080 16. R. Heyd, and A. Charlier,” Uniaxial-stress effects on the electronic properties of carbon nanotubes,” Physical Review B, Vol. 55, pp. 6820-6824, 1997. DOI: 10.1103/PhysRevB.55.6820 17. Q. Zhao, M. B. Nardelli, and J. Bernholc,” Ultimate strength of carbon nanotubes: A theoretical study,” Physical Review B, Vol. 65, pp. 144105, 2002. DOI: 10.1103/PhysRevB.65.144105 18. W. Guo, C. Z. Zhu, T. X. Yu, C. H.Woo, B. Zhang, and Y. T. Dai, “Formation of sp3 Bonding in Nanoindented Carbon Nanotubes and Graphite,” Physical L Review Letters, Vol. 93, pp. 245502, 2004. DOI: 10.1103/PhysRevLett.93.245502 19. Y. Saito, T. Nakahira, and S. Uemura,” Growth conditions of double-walled Carbon nanotubes in Arc Discharge,” The Journal of Physical Chemistry. B, Vol. 107, pp. 931-934, 2003. DOI: 10.1021/jp021367o 20. J. Zhao, Y. Su, Z. Yang, L. Wei, Y. W. and Y. Zhang,” Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties,” Carbon, Vol. 58, pp. 92-98, 2013. DOI: 10.1016/j.carbon.2013.02.036 21. Z. Zhou, L. Ci , X. Chen, D. Tang , Xiaoqin Yan, D. Liu , Y. Liang, H.Yuan , W. Zhou, G. Wang and S. Xiea,” C ontrollable growth of double wall carbon nanotubes in a floating catalytic system,” Carbon, Vol. 41, pp. 337–342, 2003. DOI: 10.1016/S0008-6223(02)00295-6 22. S. Bandow, M.Takizawa, K. Hirahara, M.Yudasaka and S. Iijima,” Raman scattering study of double-wall carbon nanotubes derived from chains of fullerenes in single-wall carbon nanotubes,” Chemical Physics Letters, Vol. 337, pp. 48-54, 2001. DOI: 10.1016/S0009-2614(01)00192-0 23. W. Orellana, “Reaction and incorporation of H2 molecules inside single-wall carbon nanotubes through multivacancy defects,” Physical Review B, Vol. 80, pp.075421-1-075421-5, 2009. DOI: 10.1103/PhysRevB Vol.80.075421 24. J. A. Robinson, E. S. Snow, Stefan C. Badescu, T. L. Reinecke and F. K. Perkins, “Role of defects in single-walled Carbon nanotube chemical sensors,” Nano Letter, Vol. 6, pp. 1747–4751, 2006. DOI: 10.1021/nl0612289 25. A. V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen and J. Keinonen,“Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes,” Physical Review B, Vol. 63, pp. 245405, 2001. DOI: 10.1103/PhysRevB.63.245405 26. O. V. Pupysheva, A. A. Farajian and B. I. Yakobson,” Fullerene Nanocage Capacity for Hydrogen Storage,” Nano letters, Vol. 8, pp. 767-774, 2008. DOI: 10.1021/nl071436g 27. L. Chen, K. Xia, L. Huang, L. Li, L. Pei and S. Fei,” Facile synthesis and hydrogen storage application of nitrogen-doped carbon nanotubes with bamboo-like structure,” International Journal of Hydrogen Energy, Vol. 38, pp. 3297-3303, 2013. DOI: 10.1016/j.ijhydene.2013.01.055 28. L. Wang and R. T. Yang” Hydrogen storage properties of carbons doped with Ruthenium, Platinum, and Nickel Nanoparticles,”The Journal of Physical Chemistry. C, Vol. 112, pp. 12486-12494, 2008. DOI: 10.1021/jp803093w 29. C.Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu and H.M. Cheng,” Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling,” Journal of Alloys and Compounds, Vol. 420, pp. 278-282, 2006. DOI: 10.1016/j.jallcom.2005.10.028 30. H. W. Zhu, A. Chen, Z. Q. Mao, C. L. Xu, X. Xiao, B. Q. Wei, J. Liang and D. H. Wu,” The effect of surface treatments on hydrogen storage of carbon nanotubes,” Journal Of Material Science Letters, Vol. 19, pp. 1237-1239, 2000. DOI: 10.1023/A:1006713228929 31. S. M. Lee and Y. H. Lee,” Hydrogen storage in single-walled carbon nanotubes,” Applied Physics Letters, Vol. 76, pp. 2877-2879, 2000. DOI: 10.1063/1.126503 32. G. Seifert,” Hydrogen on and in carbon nanostructures,” Solid State Ionics, Vol. 168, pp. 265-269 (2004). DOI: 10.1016/j.ssi.2003.02.002 33. Y. Ma, Y. Xia, M. Zhao, R. Wang and L. Mei,” Effective Hydrogen Storage in Single-wall Carbon Nanotubes,” Physical Review B, Vol. 63, pp. 115422, 2001. DOI: 10.1103/PhysRevB.63.115422 34. E. Durgun, Y.-R. Jang and S. Ciraci,” Hydrogen storage capacity of Ti-doped boron-nitride and B/Be-substituted carbon nanotubes,” Physical Review B, Vol. 76, pp. 073413, 2007. DOI: 10.1103/PhysRevB.76.073413 35. A. L. M. Reddy and S. Ramaprabhu,” Hydrogen adsorption properties of single-walled carbon nanotube—nanocrystalline platinum composites,” International Journal of Hydrogen Energy, Vol. 33, pp. 1028-1034, 2008. DOI: 10.1016/j.ijhydene.2007.11.005 36. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus,” Science, Vol. 286, pp. 1127, 1999. DOI: 10.1126/science.286.5442.1127 37. R. Lavanya, V.J. Surya, I. Lakshmi, K. Iyakutti, V. Vasu, H. Mizuseki, Y. Kawazoe,” Hydrogen storage in TiO2 functionalized (10, 10) single walled carbon nanotube (SWCNT) - First principles study,” International Journal of Hydrogen Energy, Vol. 39, pp. 4973-4980, 2014. DOI: 10.1016/j.ijhydene.2014.01.048 38. Y. W. Wen, H. J. Liu, L. Pan, X.J. Tan, H. Y. Lv, J. Shi and X. F. Tang,” A Triplet Form of (5,0) Carbon Nanotube with Higher Hydrogen Storage Capacity,” Journal of Physical Chemistry C, Vol. 115, pp. 9227-9231, 2011. DOI: 10.1021/jp1120433 39. M. Grujicic, Y.-P. Sun and K.L. Koudela,” The effect of covalent functionalization of carbon nanotube reinforcements on the atomic-level mechanical properties of poly-vinyl-ester-epoxy,” Applied Surface Science, Vol. 253, pp. 3009-3021, 2007. DOI: 10.1016/j.apsusc.2006.06.050 40. S. C. Lyu, B. C. Liu, S. H. Lee, C. Y. Park, H. K. Kang,” Large-scale synthesis of high-quality double-walled carbon nanotubes by catalytic decomposition of n-Hexane,” The Journal of Physical Chemistry. B, Vol. 108, pp. 2192-2194, 2004. DOI: 10.1021/jp030955e 41. J. Wei, L. Ci, B. Jiang, Y. Li, X. Zhang, H. Zhu, C. Xua and D. Wu,” Preparation of highly pure double-walled carbon nanotubes,” Journal of Materials Chemistry, Vol. 13, pp. 1340-1344, 2003. DOI: 10.1039/b300484h 42. M.Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, M. Terrones, M. S. Dresselhaus,” ’Buckypaper’ from coaxial nanotubes,” Nature, Vol. 433, pp. 476, 2005. DOI: 10.1038/433476a 43. J. Miyamoto, Y. Hattori, D. Noguchi, H. Tanaka, T. Ohba, S. Utsumi, H. Kanoh, Y. A. Kim, H. Muramatsu, T.Hayashi, M. Endo, and K. Kaneko,” Efficient H2 adsorption by nanopores of high-purity souble-walled carbon nanotubes,” Journal of the American Chemical Society, Vol. 128, pp. 12636-12637, 2006. DOI: 10.1021/ja064744 44. H. Wu, D. Wexler and H. Liu,” Effects of different palladium content loading on the hydrogen storage capacity of double-walled carbon nanotubes,” International Journal of Hydrogen Energy, Vol. 37, pp. 5686-5690, 2012. DOI: 10.1016/j.ijhydene.2011.12.120 45. H. Wu, D. Wexler, A. R. Ranjbartoreh, H. Liu, and G. Wang,” Chemical processing of double-walled carbon nanotubes for enhanced hydrogen storage,” International Journal of Hydrogen Energy, Vol. 35, pp. 3645-3649, 2010. DOI: 10.1016/j.ijhydene.2010.03.103 46. J. S. Im, S. C. Kang, B. C. Bai, J.-K. Suh, Y.-S. Lee,” Effect of thermal fluorination on the hydrogen storage capacity of multi-walled carbon nanotubes,” International Journal of Hydrogen Energy, Vol. 36, pp. 1560-1567, 2011. DOI: 10.1016/j.ijhydene.2010.10.024 47. R. Zacharia, S.-U. Rather, S. W. Hwang, K. S. Nahm,” Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes,” Chemical Physics Letters, Vol. 434, pp. 286-291, 2007. DOI: 10.1016/j.cplett.2006.12.022 48. P. Hohenberg and W. Kohn, ”Inhomogeneous Electron Gas,” Physical Review, Vol. 136, pp. B864, 1964. DOI: 10.1103/PhysRev.136.B864 49. W. Kohn and L. J. Sham, ”Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, Vol. 140, pp. A1133, 1965. DOI: 10.1103/PhysRev.140.A1133 50. J. P. Perdew and Y. Wang, “Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800 51. J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. DOI: 10.1103/PhysRevB.46.6671 52. J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. DOI: 10.1103/PhysRevLett.77.3865 53. T. A. Halgren and W. N. Lipscomb “The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States,” Chemical Physics Letters, Vol. 49, pp. 225-232, 1977. DOI: 10.1016/0009-2614(77)80574-5 54. X. Ye, D. Y. Sun and X. G. Gong, “Pressure-induced structural transition of double-walled carbon nanotubes,” Physical Review B, Vol. 72, pp. 035454, 2005. DOI: 10.1103/PhysRevB.72.035454 55. L. Tsetseris, S. T. Pantelides, “Defect-related hysteresis in nanotube-based nano-electromechanical systems,” Nanoscale Research Letters, Vol. 6, pp. 245, 2011. DOI: 10.1186/1556-276X-6-245 56. J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, and S. Yip, “Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures,” Journal of Chemical Physics, Vol. 119, pp. 2376, 2003. DOI: 10.1063/1.1582831
摘要: In this work, we investigute the double-walled carbon nanotube (DWCNT) with multi-vacancy defects as a material of hydrogen storage by doing First-princles calculation. By analyzing the interaction energy between hydrogen and DWCNT with double-vacancy defects, the energy barrier for hydrogen to comeover for entering DWCNT(6,6)/(11,11) can be obtained, which also helps discover the corresponding structure with the lowest energy barrier. Among all kinds of DWCNT(6,6)/(11,11) with the defect of 6V@6V has the lowest energy barrier. The energies required for hydrogen to pass through the outer tube (11,11) and the inner tube (6,6) are 1.77 eV and 0.38 eV, respectively. Furthermore, the same energies are 0.26 eV and
本研究係利用第一原理(ab initio)密度泛函計算含有雙孔空位缺陷(Vacancy defect)以及參孔空位缺陷的雙層奈米碳管(6,6)/(11,11)儲氫結構,藉由氫分子與含有缺陷之雙層奈米碳管(6,6)/(11,11)儲氫結構之交互作用能,分析氫分子經由缺陷進入雙層奈米碳管(6,6)/(11,11)儲氫結構所需之能障,找尋能有效降低穿越雙層奈米碳管能障的結構。含有雙孔空位缺陷的雙層奈米碳管(6,6)/(11,11)結構的儲氫中,能障最低的結構為具有6V@6V缺陷之雙層奈米碳管,氫分子經由路徑η進入儲氫結構穿過外層碳管(11,11)表面之空位缺陷所需能量為0.38 eV而穿過內層碳管(6,6)表面之空位缺陷所需的能量為1.77eV。另外,使用含有參孔空位缺陷的雙層奈米碳管(6,6)/(11,11)儲氫,能障最低的結構為具有D2V@6V缺陷之雙層奈米碳管,氫分子經由路徑ξ穿過外層碳管(11,11)表面之空位缺陷所需能量為0.26 eV而穿過內層碳管(6,6)表面之空位缺陷所需的能量為
文章公開時間: 2017-12-16
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.