Please use this identifier to cite or link to this item:
標題: Ab-initio Study of the Ammonia Molecules on GaN(0001) and GaN(000-1) Surfaces
作者: Huan-Chen Wang
關鍵字: first-principles
surface energy
引用: [1] I. L. Azevedo, M. G. Morgan, and F.Morgan, “The transition to solid-state lighting,” Proceedings of the IEEE, Vol. 97, pp. 481, 2009. DOI: 10.1109/JPROC.2009.2013058 [2] C. T. Hendrickson, D. H. Matthews, M. Ashe, P. Jaramillo, and F. C. McMichael, “Reducing environmental burdens of solid-state lighting through end-of-life design,” Environmental Research Letters, Vol. 5, pp. 014016, 2010. DOI: 10.1088/1748-9326/5/1/014016 [3] C. K. Sun, Y. L. Huang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Ultrafast electron dynamics study of GaN,” Physical Review B, Vol. 59, pp. 13535, 1999. DOI: 10.1103/PhysRevB.59.13535 [4] B. Imer, F. Wu, M. D. Craven, J. S. Speck, and S. P. Denbaars, “Stability of (1-100) m-Plane GaN Films Grown by Metalorganic Chemical Vapor Deposition,” Japanese Journal of Applied Physics, Vol. 45, pp. 8644, 2006. DOI: 10.1143/JJAP.45.8644 [5] R. Paszkiewicz, B. Paszkiewicz, M. Wosko, A. Szyszka, L. Marciniak, J. Prazmowska, W. Macherzynski, J. Serafinczuk, J. Kozowski, M. Tlaczala, J. Kovac, I. Novotny, J. Skriniarova, and D. Hasko,“Properties of MOVPE GaN grown on ZnO deposited on Si(001) and Si(111) substrates,” Journal of Crystal Growth, Vol. 310, pp. 4891, 2008. DOI: 10.1016/j.jcrysgro.2008.08.017 [6] G. Koblmuller, F. Wu, T. Mates, J. S. Speck, S. Fernandez-Garrido, and E. Calleja, “High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy,” Applied Physics Letters, Vol. 91, pp. 221905, 2007. DOI: 10.1063/1.2817597 [7] R. Korbutowicz, J. Kozłowski, E. Dumiszewska, and J. Serafińczuk, “X-ray characterization of thick GaN layers grown by HVPE,” Crystal Research and Technology, Vol. 40, pp. 503, 2005. DOI: 10.1002/crat.200410375 [8] S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” Applied Physics Letters, Vol. 74, pp. 1242, 1999. DOI: 10.1063/1.123512 [9] L. P. Rojas, R. Garcı’a-Dı’az, G. H. Cocoletzi, and N. Takeuchi, “Ab-initio studies of the adsorption of a B ad-atom on GaN surfaces,” Journal of Crystal Growth, Vol. 338, pp. 62, 2012. DOI: 10.1016/j.jcrysgro.2011.07.037 [10] G. Kresse, and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15, 1996. DOI: 10.1016/0927-0256(96)00008-0 [11] G. Kresse, and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 16, 1996. DOI: 10.1103/PhysRevB.54.11169 [12] G. Kresse, and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245, 1994. DOI: 10.1088/0953-8984/6/40/015 [13] G. Kresse, and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758, 1999. DOI: /10.1103/PhysRevB.59.1758 [14] W. C. Johnson, J. B. Parsons, and M. C. Crew, “Nitrogen compounds of gallium,” The Journal of Physical Chemistry, Vol. 36, pp. 10, 1932. DOI: 10.1021/j150340a015 [15] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystalline GaN,” Applied Physics Letters, Vol. 15, pp. 327, 1969. DOI: 10.1063/1.1652845 [16] H. M. Manasevit, F. M. Erdmann, and W. I. Simpso, “The Use of Metalorganics in the Preparation of Semiconductor Materials,” Jounal of Electrochemical, Vol. 118, pp. 1864, 1971. DOI: 10.1149/1.240785 [17] H. Amano, N. Sawaki, and Akasaki, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters,, Vol. 48, pp. 5, 1986. DOI: /10.1063/1.96549 [18] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Japanese Journal of Applied Physics, Vol. 30, pp. 1705, 1991. DOI: 10.1143/JJAP.30.L1705 [19] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation(LEEBI),” Japanese Journal of Applied Physics, Vol. 28, pp. 2112, 1989. DOI: 10.1143/JJAP.28.L2112 [20] S. Nakamura, T. Mukai, M. Senoh and, N. Iwasa, “Thermal Annealing Effects on p-type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, Vol. 31, pp. 139, 1992. DOI: 10.1143/JJAP.31.L139 [21] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting,” Applied Physics Letters, Vol. 64, pp. 28, 1994. DOI: 10.1063/1.111832 [22] X. L. Chen, J. Y. Li, Y. G. Cao, Y. C. Lan, H. Li, M. He, C.Y. Wang, Z. Zhang, and Z. Qiao, “Straight and Smooth GaN Nanowires,” Advanced Materials, Vol. 12, pp. 1432, 2000. DOI :10.1002/1521-4095(200010) [23] W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy,” Nano Letters, Vol. 10, pp. 3355, 2010. DOI: 10.1021/nl101027x [24] M. He, I. Minus, P. Zhou, S. N. Mohammed, J. B. Halpern, R. Jacobs, W. L. Sarney, L. Salamanca-Riba, and R. D. Vispute, “Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3,” Applied Physics Letters, Vol. 77, pp. 3731, 2000. DOI: 10.1063/1.1329863 [25] E. Monroy, E. Sarigiannidou, F. Fossard, N. Gogneau, E. Bellet-Amalric, J. L. Rouviere, S. Monnoye, H. Mank, and B. Daudin, “Growth kinetics of N-face polarity GaN by plasma-assisted molecular-beam epitaxy,” Applied Physics Letters, Vol. 84, pp. 3684, 2004. DOI: 10.1063/1.1739511 [26] R. Collazo, S. Mita, A. Aleksov, R. Schlesser, and Z. Sitar, “Growth of Ga- and N- polar gallium nitride layers by metalorganic vapor phase epitaxy on sapphire wafers,” Journal of Crystal Growth, Vol. 287, pp. 586, 2006. DOI: 10.1016/j.jcrysgro.2005.10.080 [27] A. Ishii, “First-principles study for molecular beam epitaxial growth of GaN(0001),” Applied Surface Science, Vol. 216, pp. 447, 2003. DOI: 10.1016/S0169-4332(03)00393-3 [28] H. Suzuki, R. Togashi, H. Murakami, Y. Kumagai, and A. Koukitu, “Ab initio calculation for an initial growth process of GaN on (0001) and (000-1) surfaces by vapor phase epitaxy,” physica status solidi C, Vol. 6, pp. S301, 2009. DOI: 10.1002/pssc.200880805 [29] P. L. Liu, and Y. J. Siao, “Ab initio study on preferred growth of ZnO,” Scripta Materialia, Vol. 64, pp. 483, 2011. DOI: 10.1016/j.scriptamat.2010.11.021 [30] Y. J. Siao, P. L. Liu, and Y. T. Wu, “Ab initio Study of Atomic Hydrogen on ZnO Surfaces,” Applied Physics Express, Vol. 4, pp. 125601, 2011. DOI: 10.1143/APEX.4.125601 [31] P. Hohenberg, and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864, 1964. DOI: 10.1103/PhysRev.136.B864 [32] M. Born, and R. Oppenherimer, “Zur Quantentheorie der Molekeln,” Annalen der Physik, Vol. 389, pp. 457, 1927. DOI: 10.1002/andp.19273892002 [33] W. Kohn, and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. A1133, 1965. DOI: 10.1103/PhysRev.140.A1133 [34] J. P. Perdew, and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800 [35] J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. DOI: 10.1103/PhysRevB.46.6671 [36] J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters Vol. 77, pp. 3865, 1996. DOI: 10.1103/PhysRevLett.77.3865 [37] P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “First-principles studies of GaN(0001) heteroepitaxy on ZrB2(0001),” Physical Review B, Vol. 72, pp. 245335, 2008. DOI: 10.1103/PhysRevB.72.245335 [38] C. Adelmann, J. Brault, G. Mula, and B. Daudin, “Gallium adsorption on (0001) GaN surfaces,” Physical Review B, Vol. 67, pp. 165419, 2003. DOI: 10.1103/PhysRevB.67.165419 [39] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045, 1992. DOI: 10.1103/RevModPhys.64.1045 [40] S. Keller, C. S. Suh, Z. Chen, R. Chu, S. Rajan, N. A. Fichtenbaum, M. Furukawa, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar AlGaN/GaN heterostructures and field effect transistors grown by metalorganic chemical vapor deposition,” Applied Physics Letters, Vol. 103, pp. 033708, 2008. DOI: 10.1063/1.2838214 [41] S. Rajan, A. Chini, M. H. Wong, J. S. Speck, and U. K. Mishra, ” N-polar GaN/AlGaN/GaN high electron mobility transistors,” Journal of Applied Physics, Vol. 102, pp. 044501, 2007. DOI: 10.1063/1.2769950
摘要: The effect of ammonia on the surface of wurtzite GaN was predicted from first-principles within density-functional theory by using surface energy calculation in this thesis. Investigating the scenario of the double NH3 molecules at two different polarities and terminated GaN showed that the lowest surface energy at 0.070 eV/A2 could be reached in the Ga-rich atmosphere because the double NH3 molecules was readily absorbed on the Top site of Ga-terminated GaN(0001). Considering the N-rich atmosphere, the lowest surface energy at 0.075 eV/A2 would be accompanied by the adsorption of double NH3 molecules onto the T4 site of N-terminated GaN(000-1), which was relatively stable at the polarity of GaN(000-1).
本論文係以第一原理(First-principles)密度泛函理論(Density functional theory, DFT)研究氨氣(Ammonia, NH3)對於烏采(Wurtzite)結構氮化鎵薄膜表面之影響,並使用表面能(Surface energy)計算方法來了解其表面穩定性。透過分析雙氨分子在兩種極性(Polar)方向與兩種終止端(Terminated)氮化鎵表面結果,我們可知雙氨分子在GaN(0001)極性方向中,Ga-terminated GaN(0001)為穩定表面,且雙氨分子容易吸附於Ga-terminated GaN(0001)表面之Top正常極性位置,而非錯位成長導致成長終止,並透過表面能計算可知在Ga-rich(∆μGa = 0 eV)氣氛條件時擁有最低表面能為0.070 eV/A2。而雙氨分子在GaN(000-1)極性方向中,N-terminated GaN(000-1)為較穩定表面,氨分子容易吸附於N-terminated GaN(000-1)表面之T4位置,並透過表面能計算可知在N-rich(∆μGa = −1.09 eV)氣氛條件時擁有最低表面能為0.075 eV/A2。
文章公開時間: 2017-12-16
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.