Please use this identifier to cite or link to this item:
標題: Ab-initio Study of Gd2O3 Heteroepitaxy on Si
作者: Chung-Hsin Lin
關鍵字: first-principles
interfacial energy
bixbite structure

引用: [1]A. D. Almeida, B. Santos, B. Paolo, and M. Quicheron, “Solid state lighting review-Potential and challenges in Europe,” Renewable and Sustainable Energy Reviews, Vol. 34, pp. 30, 2014. DOI: 10.1016/j.rser.2014.02.029 [2] [3]A. Gil-de-Castro, A. Moreno-Munoz, A. Larsson, J. J. G. de la Rosa, and M. H. J. Bollen, “LED street lighting: A power quality comparison among street light technologies,” Lighting Research and Technology, Vol. 45, pp. 710, 2013. DOI: 10.1177/1477153512450866 [4]W. C. Lee, Y. J. Lee, J. Kwo, C. H. Hsu, C. H. Lee, S. Y. Wu, H. M. Ng, and M. Hong, “GaN on Si with nm-thick single-crystal Sc2O3 as a template using molecular beam epitaxy,” Journal of Crystal Growth, Vol. 311, pp. 2006, 2009. DOI:10.1016/j.jcrysgro.2008.10.093 [5]R. Dargis, A. Clark, E. Arkun, R. Roucka, D. Williams, R. Smith, and M. Lebby, “Epitaxial Si and Gd2O3 Heterostructures: Distributed Bragg Reflectors with Stress Management Function for GaN on Si Light Emitting Devices,” ECS Journal of Solid State Science and Technology, Vol. 1, pp. 246, 2012. DOI: 10.1149/2.004206jss [6]H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystalline GaN,” Applied Physics Letters, Vol. 15, pp. 327, 1969. DOI: 10.1063/1.1652845 [7]W. H. Chang, C. H. Lee, P. Chang, Y. C. Chang, Y. J. Lee, J. Kwo, C. C. Tsai, J. M. Hong, C. H. Hsu, and M. Hong, “High k dielectric single-crystal monoclinic Gd2O3 on GaN with excellent thermal, structural, and electrical properties,” Journal of Crystal Growth, Vol. 311, pp. 2183, 2009. DOI: 10.1016/j.jcrysgro.2008.10.079 [8]J. X. Wang, A. Laha, A. Fissel, D. Schwendt, R. Dargis, T. Watahiki, R. Shayduk, W. Braun, T. M. Liu, and H. J. Osten, “Crystal structure and strain state of molecular beam epitaxial grown Gd2O3 on Si(111) substrates: a diffraction study,” Semiconductor Science and Technology, Vol. 24, pp. 045021, 2009. DOI: 10.1088/0268-1242/24/4/045021 [9]W. H. Chang, P. Chang, T. Y. Lai, Y. J. Lee, J. Kwo, C. H. Hsu, and M. Hong, “Structural Characteristics of Nanometer Thick Gd2O3 Films Grown on GaN (0001),” Crystal Growth & Design, Vol. 10, pp. 5117, 2010. DOI: 10.1021/cg100851b [10]W. H. Chang, C. H. Lee, Y. C. Chang, P. Chang, M. L. Huang, Y. J. Lee, C. H. Hsu, J. M. Hong, C. C. Tsai, J. R. Kwo, and M. H. Hong, “Nanometer-Thick Single-Crystal Hexagonal Gd2O3 on GaN for Advanced Complementary Metal-Oxide-Semiconductor Technology,” Advanced Materials, Vol. 21, pp. 4970, 2009. DOI: 10.1002/adma.200902101 [11]R. Braunstein, “Radiative Transitions in Semiconductors,” Physical Review, Vol. 99, pp. 1892, 1955. DOI: 10.1103/PhysRev.99.1892 [12] [13]N. Holonyak, and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1- xPx) junctions,” Applied Physics Letters, Vol. 1, pp. 82, 1962. DOI: 10.1063/1.1753706 [14]S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Applied Physics Letters, Vol. 42, pp. 427, 1983. DOI: 10.1063/1.93952 [15]A. Dadgar, A. Alam, T. Riemann, J. Blasing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, “Crack-Free InGaN/GaN Light Emitters on Si(111),” Physica Status Solidi (a), Vol. 188, pp. 155, 2001. DOI: 10.1002/1521-396 [16] [17]A. Fissel, M. Czernohorsky, and H. J. Osten, “Growth and characterization of crystalline gadolinium oxide on silicon carbide for high-K application,” Superlattices and Microstructures, Vol. 40, pp. 551, 2006. DOI: 10.1016/j.spmi.2006.07.002 [18]A. R. Kortan, M. Hong, J. Kwo, J. P. Mannaerts, and N. Kopylov, “Structure of epitaxial Gd2O3 films grown on GaAs(100),” Physical Review B, Vol. 60, pp. 10913, 1999. DOI: 10.1103/PhysRevB.60.10913 [19]W. F. Xiang, H. Ni, and H. B. Lu, “In situ RHEED analysis of epitaxial Gd2O3 thin films grown on Si(001),” Applied Physics A, Vol. 110, pp. 423, 2013. DOI: 10.1007/s00339-012-7231-9 [20]A. Fissel, D. Kuhne, E. Bugiel, and H. J. Osten, “Fabrication of single-crystalline insulator/Si/insulator nanostructures,” Journal of Vacuum Science and Technology B, Vol. 24, pp. 2041, 2006. DOI: 10.1116/1.2213266 [21]S. S. Yi, J. S. Bae, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, Y. S. Kim, and J. H. Kim, “Enhanced luminescence of Gd2O3:Eu3+ buffer-layered Y2O3:Eu3+ thin films,” Materials Science and Engineering B, Vol. 127, pp. 159, 2006. DOI: 10.1016/j.mseb.2005.10.011 [22]R. Dargis, D. Williams, R. Smith, E. Arkun, R. Roucka, A. Clark, and M. Lebby, “Structural and Thermal Properties of Single Crystalline Epitaxial Gd2O3 and Er2O3 Grown on Si(111),” ECS Journal of Solid State Science and Technology, Vol. 1, pp. N24, 2012. DOI: 10.1149/2.005202jss [23]G. Saint-Girons, P. Regreny, L. Largeau, G. Patriarche, and G. Hollinger, “Monolithic integration of InP based heterostructures on silicon using crystalline Gd2O3 buffers,” Applied Physics Letters, Vol. 91, pp. 241912, 2007. DOI: 10.1063/1.2824466 [24]T. Hattori, T. Yoshida, T. Shiraishi, K. Takahashi, H. Nohira, S. Joumori, K. Nakajima, M. Suzuki, K. Kimura, I. Kashiwagi, C. Ohshima, S. Ohmi, and H. Iwai, “Composition, chemical structure, and electronic band structure of rare earth oxide/Si(100) interfacial transition layer,” Microelectronic Engineering, Vol. 72, pp. 283, 2004. DOI: 10.1016/j.mee.2004.01.005 [25]Y. Yamada-Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Xue, J. Tolle, P. L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “Surface and interface studies of GaN epitaxy on Si(111) via ZrB2 buffer layers,” Physical Review Letters, Vol. 95, pp. 266105-1, 2005. DOI: 10.1103/PhysRevLett.95.266105 [26]P. Hohenberg, and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, Vol. 136, pp. B864, 1964. DOI: 10.1103/PhysRev.136.B864 [27]K. D. Brommer, M. Needels, B. E. Larson, and J. D. Joannopoulos, “Ab initio theory of the Si(111)-(7×7) surface reconstruction: A challenge for massively parallel computation,” Physical Review Letters, Vol. 68, pp. 1355, 1992. DOI: 10.1103/PhysRevLett.68.1355 [28]W. Kohn, and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. A1133, 1965. DOI: 10.1103/PhysRev.140.A1133 [29]J. P. Perdew, and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800 [30]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671, 1992. DOI: 10.1103/PhysRevB.46.6671 [31]J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996. DOI: 10.1103/PhysRevLett.77.3865 [32]P. L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “First-principles studies of GaN(0001) heteroepitaxy on ZrB2(0001),” Physical Review B, Vol. 72, pp. 245335-1, 2008. DOI: 10.1103/PhysRevB.72.245335
摘要: This thesis calculates the interface energy of the bixbite Gd2O3 heterogeneous epitaxial growth on the diamond-structure silicon by utilizing first-principles within density-functional theory. Moreover, the atomic arrangement at the interface of Gd2O3(111)/Si(111) is studied through analyzing the interface models. The results show that the most stable atomic bonding at the interface is O-Si; meanwhile, the lowest surface energy at 0.037 eV/A2 is obtained for the Gd-terminated Gd2O3 epitaxially grown on the Si in the Gd-rich atmosphere, which possesses of the electron density at 0.32 electrons/A3.
本論文係以第一原理(First-principles)密度泛函理論(Density functional theory, DFT)研究方鐵錳礦氧化釓異質磊晶成長於鑽石結構矽基板上之界面能,並透過分析Gd2O3(111)/Si(111)最穩定異質界面模型,以研究氧化釓薄膜在界面處之原子排列。在Gd2O3(111)之表面能研究中,Gd-terminated Gd2O3(111)比O-terminated Gd2O3(111)具有更穩定的表面型態,且O-terminated Gd2O3(111)越靠近O-rich端時其表面會越粗糙。從Gd2O3(111)/Si(111)異質界面之界面能研究中得知,最穩定界面結構鍵結為O-Si鍵之Gd-terminated Gd2O3磊晶成長在矽上,且在Gd-rich化學氣氛下有最低界面能0.037 eV/A2,界面處之電子密度為0.32 electrons/A3,表明了Gd2O3(111)/Si(111)異質界面有很強的鍵結,其界面結構具有Gd-O-Si鍵結存在,另外由界面鍵結與界面形態關係表得知,當界面鍵結為Gd-Si鍵時其界面結構為不穩態。
文章公開時間: 10000-01-01
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.