Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91776
標題: First-Principles Studies of Er2O3(110)/Si(001) Heterostructures
氧化鉺/矽異質界面結構之第一原理研究
作者: Yen- Wei Chen
陳彥瑋
關鍵字: first-principles calculations
Er2O3
Si
interfsce energy
valence band offset
第一原理
價帶偏移
氧化鉺

界面能
引用: [1]H. S. Momose, “High-frequency AC characteristics of 1.5 nm gate oxide MOSFETs,” IEEE Trans. Electron Devices, Vol. 105, pp. 511-514, 1996. DOI:10.1109/IEDM.1996.553132 [2]H. S. P. Wong, “Beyond the conventional transistor,” Journal of Physics: IBM J. RES. & DEV., Vol. 46, pp. 133-168, 2002. [3]K. Mistry et al., 'A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging,' IEDM Technical Digest, pp. 247-250, 2007. [4]V. Mikhelashvili, G. Eisenstein, and F. Edelmann, Characteristics of electron-beam-gun-evaporated Er2O3 thin films as gate dielectrics for silicon”, Journal of Applied Physics, Vol 90, pp. 5447-5451, 2001. DOI:10.1063/1.1413239 [5]V. Mikhelashvili and G. Eisenstein, “Structural and electrical properties of electron beam gun evaporated Er2O3 insulatorthin films”, Journal of Applied Physics,Vol. 95, pp. 613-622 , 2004. DOI: 10.1063/1.1633342 [6]R. L. Nigro, R. G. Toro, G. Malandrino, G. G. Condorelli, V. Raineri, and I. L. Fragala, “Praseodymium Silicate as High-k Dielectric Candidate : An Insight into the Pr2O3-Film/Si-Substrate Interface Fabricated Through a Metal-Organic-Chemical Vapor Deposition Process”, Advanced Functional Materials,Vol. 15, pp. 838-846, 2005. DOI: 10.1002/adfm.200300346 [7]H. Ono, T. Katsumata, “Interfacial reactions between thin rare-earth-metal oxide films and Si substrates,” Applied Physics Letters,Vol. 78, pp. 1832-1836, 2001. DOI: 10.1063/1.1357445 [8]S. Chen, Y. Zhu, R. Wu, Y. Wu, Y. Fan, and Z. Jianga, “Thermal stability of Er2O3 thin films grown epitaxially on Si substrates,” Journal of Applied Physics, Vol. 101, pp. 064106-064114, 2007.DOI: 10.1063/1.2712144 [9]S. Chen, Y. Y. Zhu, R. Xu, Y. Q. Wu, X. J. Yang, Y. L. Fan, F. Lu, and Z. M. Jianga, “Superior electrical properties of crystalline Er2O3 films epitaxially grown on Si substrates,” Applied Physics Letters, Vol. 88, pp. 222902-222906, 2006. DOI: 10.1063/1.2208958 [10]D.P. Norton, “Synthesis and properties of epitaxial electronic oxide thin-film materials,” Materials Science and Engineering: R: Reports,Vol. 43, pp. 139-248, 2004. DOI:10.1016/j.mser.2003.12.002 [11]R. Xu, Y. Y. Zhu, S. Chen, F. Xue, Y. L. Fan, X. J. Yang, Z. M. Jiang, “Epitaxial growth of Er2O3 films on Si(0 0 1),” Journal of Crystal Growth, Vol. 277, pp. 496 -502, 2005. DOI: 10.1016/j.jcrysgro.2005.02.015 [12]G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 11169-11187, 1996. DOI: 10.1103/PhysRevB.54.11169 [13]G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15-51, 1996. DOI: 10.1016/0927-0256(96)00008-0. [14]Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter,Vol. 6, pp. 8245-8257, 1994. DOI: 10.1088/0953-8984/6/40/015 [15]C. Adelhelm, C. Adelhelm,T. Plocinski, T. Pickert , C. Ziebert , M. Balden , F. Koch , M. Rasinski, and H. Maier, “Monoclinic B-phase erbium sesquioxide (Er 2O3) thin films by filtered cathodic arc deposition,” Scripta Materialia, Vol. 61, pp. 789-792, 2009. DOI:10.1016/j.scriptamat.2009.06.031 [16]S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang,” Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET''s,” IEEE Electron Device Letters, Vol. 18, pp. 209-211, 1997.DOI: 10.1109/55.568766 [17]M. Losurdo, M. M. Giangregorio, G. Bruno, D. Yang, E. A. Irene, A. A.Suvorova, and M. Saunders, “ Er2O3 as a high- K dielectric candidate,” Appl. Phys. Lett, Vol. 91, pp. 091914-091918, 2007. DOI: 10.1016/j.scriptamat.2012.10.029 [18]Z.B. Fang, Y.Y. Zhu,and W. Chen, “Structure and electrical characterization of amorphous ErSiO films deposited by rf magnetron sputtering on Si (001),” Applied Physics A,Vol. 102, pp. 695-698, 2011. DOI 10.1007/s00339-010-5959-7 [19]Z B Fang, S Chen, Y Y Zhu, Y QWu, Y L Fan, Y Y Wang, and Z M Jiang, “Structural and electrical characterization of ultrathin Er2O3 films grown on Si(001) by reactive evaporation,” Nanotechnology, Vol. 18, pp. 15205-15210, 2007. DOI:10.1088/0957-4484/18/15/155205 [20]M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, R. G. Toro, G. Malandrino, I. L. Fragala, L. Armelao, D. Barreca, E. Tondello, A. A. Suvorova, D. Yang, and E. A. Irene, “Multifunctional Nanocrystalline Thin Films of Er2O3: Interplay between Nucleation Kinetics and Film Characteristics,” Advanced Functional Materials, Vol. 17 , pp. 3607-3612, 2007. DOI:10.1002/adfm.200700524 [21]Y. Y. Zhu, R. Xu, S. Chen, Z. B. Fang, F. Xue, Y. L. Fan, X. J. Yang, and Z. M. Jiang, “Epitaxial growth of Er2O3 films on oxidized Si(111) and Si(001) substrates,” Thin Solid Films,Vol. 508, pp. 86-89, 2006. DOI: 10.1016/j.tsf.2005.08.389 [22]X. Wang, Y. L. Zhu, M. Heb, H.B. Lu, and X. L. Ma, “Structural and microstructural analyses of crystalline Er2O3 high-k films grown on Si (0 0 1) by laser molecular beam epitaxy,” Acta Materialia., Vol. 59, pp. 1644-1650, 2011. DOI: 10.1016/j.actamat.2010.11.031 [23]R. Hull, Properties of Crystalline Silicon, IET, pp. 91 (1999). [24]R. Hull, Properties of Crystalline Silicon, IET, pp. 155 (1999). [25]W. E. Beadle, J. C. C. Tsai, and R. D. Plummer, “Quick Reference Manual for Silicon Integrated Circuit Technology,” Wiley, pp. 1 (1985). [26]R. Hull, Properties of Crystalline Silicon, IET, pp. 165 (1999). [27]R. Hull, Properties of Crystalline Silicon, IET, pp. 153 (1999). [28]R. Hull, Properties of Crystalline Silicon, IET, pp. 98 (1999). [29]H. C. Casey, “Devices for integrated circuits: silicon and III-V compound semiconductors,” John Wiley,Vol. 45, 1999. [30]R. Hull, “Properties of Crystalline Silicon,” IET,Vol. 430, 1999. [31]P. L. Liu and K. C. Lia, “Accommodation at the interface of highly dissimilar GaN(0001)/Sc2O3(111) heteroepitaxial systems,” Scripta Materialia, Vol. 68, pp. 211-214, 2013. DOI: 10.1016/j.scriptamat.2012.10.029 [32]P. L. Liu Y. J. Siao, Y. T. Wu, C. H. Wang and C. S. Chen, “Structural, electronic and energetic properties of GaN[0 0 0 1]/Ga2O3[1 0 0] heterojunctions: A first-principles density functionaltheory study,” Scripta Materialia, Vol. 65, pp. 465-468, 2011. DOI: 10.1016/j.scriptamat.2011.05.028 [33]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: theory and numerical experiments,” Journal of Physics D: Applied Physics, Vol. 31, pp. 1273-1299, 1998.Doi: 0022-3727/31/11/002 [34]Y. Y. Zhu, S. Chen, R. Xu, Z. B. Fang, J. F. Zhao, “Band offsets of Er2O3 films epitaxially grown on Si substrates,” Applied Physics Letters,Vol. 88, pp. 162909-162911, 2006. DOI: 10.1063/1.2196476. [35]P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864-B870, 1964. DOI: 10.1103/PhysRev.136.B864 [36]W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol 140, pp. A1133-A1138, 1965. DOI: 10.1103/PhysRev.140.A1133 [37]J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800-8802, 1986. DOI: 10.1103/PhysRevB.33.8800 [38]J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Revienntal-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045, 1992. DOI:10.1103/RevModPhys.64.1045 [39]D. H. Hamalm, M. Schluter, and C. Chiang, “Norm-Conserving Pseudopotentials.” Physical Review Letters, Vol. 43, pp.1494-1497, 1979. DOI: http://dx.doi.org/10.1103/PhysRevLett.43.1494 [40]M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045-1097 (1992). DOI:10.1103/RevModPhys.64.1045 [41]P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864-B871, 1964. DOI:10.1103/PhysRev.136.B864 [42]W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. A1133-A1138, 1965. DOI:10.1103/PhysRev.140.A1133 [43]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: the- ory and numerical experiments,” Journal of Physics D-applied physics, Vol. 31, pp. 1273-1299, 1998. DOI:10.1088/0022-3727/31/11/002 [44]G. H. Lu, M. Huang, M. Cuma, and F. Liu , “Relative stability of Si surfaces: A first-principles study “, Surface Science, Vol. 588, pp. 61-70, 2005. DOI: 10.1016/j.susc.2005.05.028 [45]C. Liu, E. F. Chor, L. S. Tan, and Y. Dong, “Band offset measurements of the pulsed-laser-deposition-grown Sc2O3 (111)/GaN (0001) heterostructure by X-ray photoelectron spectroscopy,” Physica status solidi. C, Current topics in solid state physics, Vol. 4, pp. 2330, 2007. DOI 10.1002/pssc.200674702 [46]http://chem5.nchc.org.tw/software/ (NCHC 化學與生物軟體資料庫系統) [47] P. E. Blochl, “Projector augmented-wave method,” Physical Review B,Vol. 50, pp. 17953-17989, 1994. Doi: 10.1103/PhysRevB.50.17953 [48]G. Concas, J. K. Dewhurst, A. Sanna, S. Sharma, and S. Massidda, “Anisotropic exchange interaction between nonmagnetic europium cations in Eu2O3,” Phys. Rev. B, Vol. 84, pp. 014427-014433, 2011. Doi: 10.1103/PhysRevB.84.014427 [49]P. Moontragoon, Z. Ikonic, and P. Harrison, “Band Structure Calculations of Si-Ge-Sn Alloys:Achieving direct band gap materials,” Semiconductor Science and Technology, Vol. 22 , pp. 742-748, 2007. DOI: 10.1088/0268-1242/22/7/012 [50]A. Baldereschi, S. Baroni and R. Resta, “Band Offsets in Lattice-Matched Heterojunctions: A Model and First-Principles Calculations for GaAs/AlAs,” Physical Review Letters, Vol. 61, pp. 734-737, 1988. DOI: 10.1103/PhysRevLett.61.734 [51]T. Ji, L. Peng, Z. Fang, Y. Cui, and Y. Hao, “Band offsets of Er2O3 films grown on Ge substrates by X-ray photoelectron spectroscopy,” Appl Phys A, Vol. 17, pp. 798-800, 2013.DOI 10.1007/s00339-013-7870-5 [52]A.A. Dakhel, “Characterisation of oxidised erbium films deposited on Si(1 0 0) substrates,” Mater. Chem. Phys., Vol. 100, pp. 366-371 , 2006. DOI: 10.1016/j.matchemphys.2006.01.005 [53]M.P. Singh, S.A. Shivashankar, “Structural and optical properties of polycrystalline thin films of rare earth oxides grown on fused quartz by low pressure MOCVD,” J. Cryst. Growth, Vol. 276, pp. 148-157, 2005. DOI:10.1016/j.jcrysgro.2004.11.325
摘要: The interfacial energy and valence band offset of the cubic Er2O3(110) epitaxially grown on Si(001) substrate are investigated in thesis by conducting first-principles within total-energy density functional calculations. The most favorable interfacial structure between Er2O3(110) and Si(001) is also deduced in order to realize its atomic arrangement. This work proposes several favorable interfacial structures as follows: 1. four-coordinated Si bonded with single Er-Si, single O-Si, and double Si-Si; 2. four-coordinated Si bonded with double Er-Si and double Si-Si; 3. four-coordinated Si bonded with double O-Si and double Si-Si. Consequently the oxidation of Si(001) surface is considered to be beneficial to the subsequently exitaxial growth of Er2O3(110). Moreover, the study on the band offset of Er2O3(110)/Si(001) reveals the lowest interfacial energy at -2.23 eV. This result agrees with the previous works.
本論文係以第一原理計算(First-principles)基於密度泛函理論(Density functional theory, DFT)研究氧化鉺薄膜異質磊晶成長於矽基板之界面能與能帶偏移,並透過分析Er2O3(110)/Si(001)最穩定異質界面模型以研究氧化鉺薄膜在界面處之原子排列。在Er2O3(110)/Si(001)異質界面之界面能研究中,最穩定界面結構鍵結為配位數4之Si原子、鍵結包括1個Er─Si鍵、1個O─Si鍵及2個Si─Si鍵與配位數4之Si原子,鍵結包括2個Er─Si鍵、2個Si─Si及配位數4之Si原子,鍵結包括2個O─Si鍵、2個Si─Si鍵鍵,證明矽基板氧化後將有助於氧化餌後續磊晶成長,而界面能與原子間鍵長壓縮量或異質界面應變量是正比關係。在Er2O3(110)/ Si(001)異質界面之能帶偏移(Band offset)研究中,最穩定界面結構與界面能研究相同,能帶偏移計算結果得出氧化鉺(110)與矽(001)最低值為-2.23 eV,結果證實此界面結構鍵結,使我們得到高品質氧化鉺磊晶薄膜。
URI: http://hdl.handle.net/11455/91776
文章公開時間: 10000-01-01
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.