Please use this identifier to cite or link to this item:
標題: Ab-initio Study of GaN(0001)/TiN(111) Heterostructures
作者: Wen-Han Yang
關鍵字: first-principles
GaN, TiN
interface energy
valence band offsets
引用: [1]A. D. Almeida, B. Santos, B. Paolo, and M. Quicheron, “Renewable and Sustainable Energy Reviews,” Renewable and Sustainable Energy Reviews, Vol. 34, pp. 30 (2014). DOI: 10.1016/j.rser.2014.02.029 [2]J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y.C. Lin, W.C. Lai, J.M. Tsai, G.C. Chi, and R.K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photonics Technology Letters, Vol. 15(1), pp. 18 (2003). DOI: 10.1109/LPT.2002.805852 [3]Z. B. Kamarei, “Analysis for Science Librarians of the 2014 Nobel Prize in Physics: Invention of Efficient Blue-Light-Emitting Diodes,” Science & Technology Libraries, Vol. 34(1), pp. 19 (2015). DOI: 10.1080/0194262X.2014.1003438 [4]A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, “Quasiparticle band structure of AlN and GaN,” Physical Review B, Vol. 48(16), pp. 11810 (1993). DOI: 10.1103/PhysRevB.48.11810 [5]E. V. Etzkorn and D. R. Clarke, “Cracking of GaN films,” Journal of Applied Physics, Vol. 89, pp. 1025 (2001). DOI: 10.1063/1.1330243 [6]J. N. Kuznia, M. A. Khan, and D. T. Olson, “Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates,” Journal of Applied Physics, Vol. 73(9), pp. 4700 (1993). DOI: 10.1063/1.354069 [7]O. P. Silva, M. R. Jr., R. R. Pela, L. K. Teles, L. G. Ferreira, and M. Marques, “All-out band structure and band offset ab initio predictions for AlN/GaN and AlP/GaP interfaces,” Journal of Applied Physics, Vol. 114(3), pp. 033709 (2013). DOI: 10.1063/1.4812493 [8]C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr, M. Tchernycheva, F. H. Julien, W. G. Schmidt, K. Lischka, and D. J. As, “Band offsets in cubic GaN/AlN superlattices,” Physical Review B, Vol. 83(19), pp. 195301 (2011). DOI: 10.1103/PhysRevB.83.195301 [9]T. Watanabe, K. Ito, S. Tsukimoto, Y. Ushida, M. Moriyama, N. Shibata, and M. Murakami, “Growth of GaN on Nitriding TiN buffer layers,” Materials Transactions, Vol. 46, pp. 1975 (2005). DOI: 10.2320/matertrans.46.1975 [10]E. F. Schubert, “History of light-emitting diodes,” Light-Emitting Diodes , 2nd ed. Cambridge, UK: Cambridge University Press, pp. 1-4 (2006). DOI: 10.1017/CBO9780511790546.002 [11]E. F. Schubert, “History of light-emitting diodes,” Light-Emitting Diodes , 2nd ed. Cambridge, UK: Cambridge University Press, pp. 4-8 (2006). DOI: 10.1017/CBO9780511790546.002 [12]E. F. Schubert, “History of light-emitting diodes,” Light-Emitting Diodes , 2nd ed. Cambridge, UK: Cambridge University Press, pp. 4-8 (2006). DOI: 10.1017/CBO9780511790546.002 [13]E. F. Schubert, “History of light-emitting diodes,” Light-Emitting Diodes , 2nd ed. Cambridge, UK: Cambridge University Press, pp. 15-17 (2006). DOI: 10.1017/CBO9780511790546.002 [14]S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates,” Applied Physics Letters, Vol. 42, pp. 427 (1983). DOI: 10.1063/1.93952 [15]P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A, Vol. 64, pp. 417 (1997). DOI: 10.1007/s003390050498 [16]H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystalline GaN,” Applied Physics Letters, Vol. 15, pp. 327 (1969). DOI: 10.1063/1.1652845 [17]M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (11-20) a-plane GaN thin films grown on (1-102) r-plane sapphire,” Applied Physics Letters, Vol. 81, pp. 469 (2002). DOI: 10.1063/1.1493220 [18]Q. Sun, B. Leung, Christopher D. Yerino, Y. Zhang, and J. Han, “Improving microstructural quality of semipolar (11-22) GaN on m-plane sapphire by two-step growth process,” Applied Physics Letters, Vol. 95, pp. 231904 (2009). DOI: 10.1063/1.3269605 [19]H. Sekiguchi, T. Nakazato, A. Kikuchi, and K. Kishino, “Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by rf-plasma-assisted molecular-beam epitaxy,” Journal of Crystal Growth, Vol. 300, pp. 259 (2007). DOI: 10.1016/j.jcrysgro.2006.11.036 [20]B. O. Johansson, J. E. Sundgren, J. E. Greene, A. Rockett, and S. A. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” Journal of Vocuum Science & Technology A, Vol. 3, pp. 303 (1985). DOI: 10.1116/1.573255 [21]H. Hochst and R. D. Bringans, “Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN,” Physical Review B, Vol. 25(12), pp. 7183 (1982). DOI: 10.1103/PhysRevB.25.7183 [22]H. Park, J. Heo, F. Cao, J. Kwon, K. Kang, G. Bae, and C. Lee, “Deposition behavior and microstructural features of vacuum kinetic sprayed aluminum nitride,” Journal of Thermal Spray Technology, Vol. 22(6), pp. 882 (2013). DOI: 10.1007/s11666-013-9923-x [23]J. W. Gerlach, T. Hoche, F. Frost, and B. Rauschembach, “Ion beam assisted MBE of GaN on epitaxial TiN films,” Thin Solid Films, Vol. 459, pp. 13(2004). DOI: 10.1016/j.tsf.2003.12.075 [24]Y. Uchida, K. Ito, S. Tsukimoto, Y. Ikemoto, K. Hirata, N. Shibata, and M. Murakami, “Epitaxial growth of GaN layers on metallic TiN buffer layers,” Journal of Electronic Materials, Vol. 35(10), pp. 1806 (2006). DOI: 10.1007/s11664-006-0161-6 [25]K. Ito, Y. Uchida, S. Lee, S. Tsukimoto, Y. Ikemoto, K. Hirata, and M. Murakami, “Effects of TiN buffer layer thickness on GaN growth,” Journal of Electronic Materials, Vol. 38(4), pp. 511 (2009). DOI: 10.1007/s11664-008-0597-y [26]E. P. Wang, J. M. Bian, F. W. Qin, D. Zhang, Y. M. Liu, Y. Zhao, Z. W. Duan, and S. Wang, “Effect of TMGa flux on GaN films deposited on Ti coated on glass substrates at low temperature,” Condensed Matter Physics, Vol. 58(30), pp. 3617 (2013). DOI: 10.1007/s11434-013-6027-4 [27]J. M. Bian, L. Miao, F. Qin, Z. Dong, W. Liu, and H. Liu, “Low-temperature ECR-PEMOCVD deposition of high-quality crystalline gallium nitride films: A comparative study of intermediate layers for growth on amorphous glass substrates,” Materials Science in Semiconductor Processing, Vol. 26, pp. 182 (2014). DOI: 10.1016/j.mssp.2014.04.030 [28]Y. Y. Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Xue, J. Tolle, P. L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “Surface and interface studies of GaN epitaxy on Si(111) via ZrB2 buffer layers,” Physical Review Letters, Vol. 95, pp. 266105 (2005). DOI: 10.1103/PhysRevLett.95.266105 [29]P. L. Liu, “Highly strained metastable heterojunction between wurtzite GaN(0001) and cubic CrN(111),” Journal of The Electrochemical Society, Vol. 157(11), pp. D577 (2010). DOI: 10.1149/1.3489369 [30]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: theory and numerical experiments,” Journal of Physics D: Applied Physics, Vol. 31, pp. 1273 (1998). DOI: 10.1088/0022-3727/31/11/002 [31]P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864 (1964). DOI: 10.1103/PhysRev.136.B864 [32]W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. A1133 (1965). DOI: 10.1103/PhysRev.140.A1133 [33]J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800 (1986). DOI: 10.1103/PhysRevB.33.8800 [34]J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671 (1992). DOI: 10.1103/PhysRevB.46.6671 [35]J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865 [36]M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045 (1992). DOI:10.1103/RevModPhys.64.1045 [37]G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 11169 (1996). DOI: 10.1103/PhysRevB.54.11169 [38]G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15 (1996). DOI: 10.1016/0927-0256(96)00008-0 [39]G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245 (1994). DOI: 10.1088/0953-8984/6/40/015 [40]T. Lee, B. Delley, C. Stampfl, and A. Soon, “Environment-dependent nanomorphology of TiN: the influence of surface vacancies,” Nanoscale, Vol. 4(16), pp. 5183 (2012). DOI: 10.1039/c2nr31266b [41]V. Timon, S. Brand, S. J. Clark, and R. A. Abram, “Ab initio studies of strained wurtzite GaN surfaces,” Journal of Physics Condensed Matter, Vol. 16(4), pp. 531 (2004). DOI: 10.1088/0953-8984/16/4/002 [42]J. Bourne and R. L. Jacobs, “The band structure of GaN,” Journal of Physics C Solid State Physics, Vol. 5(24), pp. 3462 (1972). DOI: 10.1088/0022-3719/5/24/008 [43]A. Neckel, P. Rastl, R. Eibler, P. Weinberger, and K. Schwarz, “Results of self-consistent band-structure calculations for ScN, ScO, TiC, TiN, TiO, VC, VN and VO,” Journal of Physics C Solid State Physics, Vol. 9(4), pp. 579 (1975). DOI: 10.1088/0022-3719/9/4/008 [44]V. Ern and A. Switendick, “Electronic band structure of TiC, TiN, and TiO,” Physical Review, Vol. 137(6a), pp. A1927 (1965). DOI: 10.1103/PhysRev.137.A1927
摘要: In this work, the heteroepitaxial growths of wurtzite GaN(0001) on fcc TiN(111) were studied by doing the first-principles calculations. For N-polar GaN grown on TiN under N-rich and Ga-rich ambients, the interface energy of GaN(0001)/TiN(111) heterojunction would have a minimal value of −0.064 eV/Å2 while N−Ti bonds are present in the interface structure. Moreover, the result from the band offset calculations of GaN(0001)/TiN(111) reveals the lowest interfacial energy at 3.79 eV. This result agrees with the previous work that successfully grew epitaxial GaN on sapphire with TiN buffer layer by metal organic chemical vapor deposition. Keywords: first-principles, GaN, TiN, interface energy, valence band offsets.
本論文係以第一原理(First-principles)密度泛函理論(Density functional theory, DFT)研究烏采結構氮化鎵薄膜異質磊晶成長於面心立方結構氮化鈦的異質界面之界面能,並透過分析GaN(0001)/TiN(111)最穩定異質界面模型以研究氮化鎵薄膜在界面處之原子排列。在GaN(0001)/TiN(111)異質界面之界面能研究中,最穩定界面結構鍵結為N-Ti鍵且於N-rich與Ga-rich化學氣氛下之N-polar GaN磊晶成長在TiN上有最低界面能−0.064 eV/Å2。在GaN(0001)/TiN(111)異質界面之能帶偏移(Band offset)研究中,最穩定界面結構與界面能研究結果一致,能帶偏移計算結果得出氮化鎵(0001)與氮化鈦(111)最低值為3.79 eV,證實此界面鍵結結構可以得到高品質的氮化鎵薄膜。 關鍵詞:第一原理、氮化鎵、氮化鈦、界面能、價帶偏移。
文章公開時間: 2018-08-05
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.