Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91784
標題: Ab-initio Study of Dislocation Network in Silicon
矽差排網絡之全始算研究
作者: Hsiang-yuan Lin
林祥淵
關鍵字: First-principles density functional theory
dislocation
network
interfacial energy
density of state, highest occupied Kohn-Sham orbitals
lowest unoccupied Kohn-Sham orbitals
第一原理計算
差排
網絡
界面能
電子態密度
最高佔據分子軌域與最低未占分子軌域
引用: [1] K. W. Lee, A. Noriki, K. Kiyoyama, T. Fukushima, T. Tanaka, and M. Koyanagi, 'Three-Dimensional Hybrid Integration Technology of CMOS, MEMS, and Photonics Circuits for Optoelectronic Heterogeneous Integrated Systems,' IEEE Transactions on Electron Devices, Vol. 58, pp. 748-757, 2011. DOI: 10.1109/TED.2010.2099870. [2] D. Saha, D. Basu, and P. Bhattacharya, 'A monolithically integrated magneto-optoelectronic circuit,' Applied Physics Letters, Vol. 93, 2008. DOI: 10.1063/1.3028092 [3] Y. Furukawa, H. Yonezu, A. Wakahara, S. Ishiji, S. Y. Moon, and Y. Morisaki, 'Growth of Si/III-V-N/Si structure with two-chamber molecular beam epitaxy system for optoelectronic integrated circuits,' Journal of Crystal Growth, Vol. 300, pp. 172-176, 2007. DOI: 10.1016/j.jcrysgro.2006.11.021. [4] H. Y. Yu, J. H. Park, A. K. Okyay, and K. C. Saraswat, 'Selective-Area High-Quality Germanium Growth for Monolithic Integrated Optoelectronics,' IEEE Electron Device Letters, Vol. 33, pp. 579-581, 2012. DOI:10.1109/LED.2011.2181814 [5] A. A. Ketterson, J. W. Seo, M. H. Tong, K. L. Nummila, J. J. Morikuni, K. Y. Cheng, S. M. Kang, and I. Adesida, 'A Modfet-Base optoelectronic Integrated-Circuit receiver for optical interconnects,' IEEE Transactions on Electron Devices, Vol. 40, pp. 1406-1416, 1993. DOI: 10.1109/16.223699. [6] Y. K. Fang, C. R. Liu, K. H. Chen, and C. H. Lin, 'A low-cost and high-current gain A-SI/C-SI heterojunction photoreceiver for large-area optoelectronics integrate-circuit applications,' IEEE Electron Device Letters, Vol. 16, pp. 190-192, 1995. DOI: 10.1109/55.382236. [7] D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, 'A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 mu m,' Nature, Vol. 387, pp. 686-688, 1997. [8] M. Kittler, T. Arguirov, A. Fischer, and W. Seifert, 'Silicon-based light emission after ion implantation,' Optical Materials, Vol. 27, pp. 967-972, 2005. DOI: 10.1016/j.optmat.2004.08.045. [9] W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, 'An efficient room-temperature silicon-based light-emitting diode,' Nature, Vol. 410, pp. 192-194, 2001. DOI: 10.1038/35065571. [10] T. Puritis and J. Kaupuzs, 'Radiative phonon-assisted and Auger recombination in Si nanocrystals,' Optical Materials, Vol. 32, pp. 840-844, 2010. DOI: 10.1016/j.optmat.2010.03.007. [11] X. Yu, W. Seifert, O. F. Vyvenko, M. Kittler, T. Wilhelm, and M. Reiche, 'A pure 1.5 mu m electroluminescence from metal-oxide-silicon tunneling diode using dislocation network,' Applied Physics Letters, Vol. 93, 2008. DOI: 10.1063/1.2965126. [12] M. Kittler, X. Yu, T. McHedlidze, T. Arguirov, O. F. Vyvenko, W. Seifert, M. Reiche, T. Wilhelm, M. Seibt, O. Voss, A. Wolff, and W. Fritzsche, 'Regular dislocation networks in silicon as a tool for nanostructure devices used in optics, biology, and electronics,' Small, Vol. 3, pp. 964-973, 2007. DOI: 10.1002/smll.200600539. [13] C. L. Hsin, W. W. Wu, L. W. Chu, H. C. Hsu, and L. J. Chen, 'Controlled growth of the silicide nanostructures on Si bicrystal nanotemplate at a precision of a few nanometres,' Crystengcomm, Vol. 13, pp. 3967-3970, 2011. DOI: 10.1039/c1ce05329a. [14] K. Rousseau, J. L. Rouviere, F. Fournel, and H. Moriceau, 'Stability of interfacial dislocations in (001) silicon surfacial grain boundaries,' Applied Physics Letters, Vol. 80, pp. 4121-4123, 2002. DOI: 10.1063/1.1481957. [15] Y. Imai, M. Mukaida, K. Kobayashi, T. Tsunoda 'Calculation of the density of states of transition metal monosilicides by a first-principle pseudopotential method using plane-wave basis,' Thin Solid Films, 2001. DOI: 10.1016/S0966-9795(01)00002-4. [16] MD. Segall, PJD. Lindan, MJ. Probert, CJ. Pickard, PJ. Hasnip, SJ. Clark, MC. Payne, 'First-principles simulation: ideas, illustrations and the CASTEP code,' Matter 14 2717. DOI:10.1088/0953-8984/14/11/301. [17] K. Yasui and J. Kanasaki, 'Scanning tunneling microscopic studies of laser-induced modifications of Si(001)-(2x1) surface,' Journal of Applied Physics, Vol. 110, 2011. DOI: 10.1063/1.3662120. [18] M. S. Xu, S. Tsukamoto, S. Ishida, M. Kitamura, Y. Arakawa, R. G. Endres, and M. Shimoda, 'Conductance of single thiolated poly(GC)-poly(GC) DNA molecules,' Applied Physics Letters, Vol. 87, 2005. DOI: 10.1063/1.2032605. [19] M. Kittler, X. Yu, O. F. Vyvenko, M. Birkholz, W. Seifert, M. Reiche, T. Wilhelm, T. Arguirov, A. Wolff, W. Fritzsche, and M. Seibt, 'Self-organized pattern fonnation of biomolecules at silicon surfaces: Intended application of a dislocation network,' Materials Science & Engineering C-Biomimetic and Supramolecular Systems, Vol. 26, pp. 902-910, 2006. DOI: 10.1016/j.msec.2005.09.047. [20] P. Hohenberg and W. Kohn, 'Inhomogeneous electron gas, ' Physical Review, Vol. 136, pp. B864, 1964. DOI: 10.1103/PhysRev.136.B864. [21] W. Kohn and L. J. Sham, 'Self-consistent equations including exchange and correlation effects, ' Physical Review, Vol. 140, pp. A1133, 1965. DOI: 10.1103/PhysRev.140.A1133. [22] J. P. Perdew and Y. Wang, 'Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation, ' Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800. [23] J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, 'Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, ' Physical Review B, Vol. 46, pp. 6671, 1992. DOI: 10.1103/PhysRevB.46.6671. [24] J. P. Perdew, K Burke, and M. Ernzerhof, 'Generalized Gradient Approximation Made Simple, ' Physical Review Letters Vol. 77, pp. 3865, 1996. DOI: 10.1103/PhysRevLett.77.3865. [25] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, 'Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, ' Reviews of Modern Physics, Vol. 64, pp. 1045, 1992. DOI: 10.1103/RevModPhys.64.1045. [26] P.-L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, 'First-principles studies of GaN(0001) heteroepitaxy on ZrB2(0001), ' Physical Review B, Vol. 72, pp.245335, 2008. DOI: 10.1103/PhysRevB.72.245335. [27] L. S. Hounsome , R. Jones, M. J. Shaw, and P. R. Briddon, 'Photoelastic constants in diamond and silicon, ' Physical. Status. Solidi A, Vol. 203, pp. 3088–3093, 2006 / DOI 10.1002/pssa.200671121. [28] Otsuki. A, 'Energies of (001)twist boundaries in silicon, ' ACTA MATERIALIA, Vol. 49, pp. 1737-1745, 2001. DOI: 10.1016/S1359-6454(01)00090-8. [29] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, 'Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, ' International Journal of Quantum Chemistry, Vol. 77, pp. 895-910, 2000. DOI: 10.1002/(SICI)1097-461X(2000)77. [30] Pairot Moontragoon, Zoran Ikonic, and Paul Harrison, 'Band Structure Calculations of Si-Ge-Sn Alloys:Achieving direct band gap materials, ' Semiconductor Science and Technology, Vol. 22, pp. 742-748. DOI:10.1088/0268-1242/22/7/012.
摘要: Optoelectronic integrated circuits made of silicon substrate to be used in the optical transmission system optoelectronic integrated circuits, there has been resistor-capacitor delay, the used dislocation network in silicon can be improved. This thesis is based on a first-principles density functional theory (DFT) study of the physical properties of a silicon dislocation network. The network used an analog and an analog interface to determine whether the grain boundary-induced twist-mediated energy level defects among valence and conduction bands, electronic density of states, highest occupied Kohn-Sham orbitals, and lowest unoccupied Kohn-Sham orbitals. In addition, interfacial energy generated because of the overlap between the grain boundary atomic drop was determined by considering the angle θ = 28. During valence and conduction band analysis, the grain boundary-induced twist caused energy level defect between the valence and conduction bands. Furthermore, these defects produced spectral peaks. The thesis revealed that photon transition-induced dislocation is possible explanation for the aforementioned phenomenas.
以矽基板製作的光電積體電路可以應用在光學傳輸上,光電積體電路的系統中一直存在著電阻電容延遲,所以利用矽差排網絡結構的特性是一個可以改善電阻電容延遲,因此本研究是以第一原理計算(First-principles)係基於密度泛函理論(Density functional theory, DFT)研究矽差排網絡之物理特性,使用扭轉晶界所模擬差排網絡結構並且分析界面能和價電帶與導電帶的電子態密度和最高佔據分子軌域與最低未占分子軌域計算,在界面能方面可以得知從完美晶體到扭轉角度20°時界面能會隨著扭轉角度增加而上升,之後隨著扭轉角度的增加會隨著原子重合而使界面能下降,通過分析發現旋轉角度θ=28°界面能是下降到最低點,之後隨著扭轉角度增加界面能隨之上升。在價電帶與導電帶的分析中,在扭轉晶界之後會導致在價電帶與導電帶之間出現缺陷能階,由光譜儀的觀察結果發現在能量0.84eV發現到有光波產生,在研究中發現利用差排網絡結構所引起的光子躍遷是會發生的,因此在光譜儀0.84eV產生的波峰是由旋轉角度θ=6°的|–0>能量E=6.43eV的缺陷能階所提供並非原本的能階所發出的光。
URI: http://hdl.handle.net/11455/91784
文章公開時間: 10000-01-01
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.