請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/91785
標題: Design and Fabrication of In-Situ Monitoring System for Epitaxial Growth Applications
磊晶用之即時監控系統設計與製作
作者: Shun-Ji Shih
石舜吉
關鍵字: in-situ monitor
metal organic chemical vapor deposition
position sensitive detector
GaN
即時監控
有機金屬化學氣相沉積系統
位置感測器
氮化鎵
引用: [1] H. J. Round, “A Note on Carborundum”, Electrical World, vol. 49, pp.309, 1907. [2] G. G. Stoney. “The tension of metallic films deposited by electrolysis”,Proc. Roy. Soc., Vol. 82, pp.172-175, 1909. [3] K. G. Soderberg and A. K. Graham, “Stress in electro-deposits -Its significance”, Proc. Am. Electroplater’s Soc , Vol. 34, p.97, 1947. [4] A. Brenner and S. Senderoff, “Calculation of stress in electrodeposits from the curvature of a plated strip”, J. Research of the Nat’l. Bureau of U. S. Standards, Vol. 42, pp. 105-123, 1949. [5] R. W. Hoffman, in Physics of Thin Films, Vol. 3, Academic Press: New York, p. 211, 1966. [6] R. W. Hoffman, in physics of nonmetallic Thin Films, edited by C. H. S.Dupuy and A. Cachard, Plenum Press: New York, p.273, 1976. [7] R.W. Hoffman, “Stress in thin films: the relevance of gain boundaries and impurities”, Thin Solid Films, Vol. 34, pp185-190, 1976. [8] L.B. Freund, J.A. Floro, E. Chason, Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations, Appl. Phys. Lett. Vol. 74, pp. 1987-1989, 1999. [9] C. A. Klein, “How accurate are Stoney’s equation and recent modifications”, J. Appl. Phys. Vol. 88, pp. 5487-5489 , 2000. [10] X. C. Zhang, B. S. Xu, H. D. Wang, and Y. X. Wu, “Error analyses on some typically approximate solutions of residual stress within a thin film on a substrate”, J. Appl. Phys. Vol. 98, pp. 053516-053521, 2005. [11] L. B. Freund and S. Suresh, in Thin Film Materials, Stress, Defect Formation And Surface Evolution , Cambridge University Press, Cambridge, 2006. [12] D. S. Campbell, Mechanical Properties of Thin Films, Handbooks of Thin Film Technology, Vol. 12, edited by L. I. Maissel and R. Glang, New York, pp. 21–50, 1970. [13] J. Scarminio, S. N. Sahu, and F. Decker, “In situ measurements of the stress changes in thin-film electrodes”, J. Phys. E 22, pp. 755-757, 1989. [14] D. Dini, S. Passerini, B. Scrosati, and F. Decker, “Stress changes in electrochromic thin film electrodes: Laser beam deflection method (LBDM) as a tool for the analysis of intercalation processes”, Sol.Energy Mater. Sol. Cells, Vol. 56, pp. 213-221 , 1999. [15] Y. H. Kim, S. I. Pyun, and J. Y. Go, “An investigation of intercalation-induced stresses generated during lithium transport through sol-gel derived LixMn2O4 film electrode using a laser beam deflection method”, Electrochim. Acta, Vol. 51, pp. 441-449, 2005. [16] S. I. Pyun, J. Y. Go, and T. S. Jang, “An investigation of intercalation-induced stresses generated during lithium transport through Li1-δCoO2 film electrode using a laser beam deflection method”,Electrochim. Acta, Vol. 49, pp. 4477-4486, 2004. [17] H. Mukaibo, T. Momma, Y. Shacham-Diamand, T. Osaka, and M.Kodaira, “In Situ Stress Transition Observations of Electrodeposited Sn-Based Anode Materials for Lithium-Ion Secondary Batteries”, Electrochem. Solid-State Lett. Vol. 10, A70-73, 2009. [18] S. J. Lee, J. K. Lee, S. H. Chung, H. Y. Lee, S. M. Lee, and H. K. Baik, “Stress effect on cycle properties of the silicon thin-film anode”, J.Power Sources, Vol. 97–98, pp. 191-193, 2001. [19] G. G. Lang and M. Seo, “On the electrochemical applications of the bending beam method”, J. Electroanal. Chem. Vol. 490, pp. 98-101, 2000. [20] X. Xiao and D. Schleh, “Refractive error correction for in situ curvature measurement using laser beam deflection method”, J. Appl. Phys. Vol. 107, pp. 013508-013513, 2010. [21] K. L. Chopra, Mechanical effects in thin films, in Thin Film Phenomena, McGRAW -HILL : New York, p.266,1969. [22] Donati, S. “Electro-Optical Instumentation Sensing and Measuring with lasers”, Prentice Hall, 1 edition, 2004. [23] 郭浩中,賴芳儀,郭守義著,LED 原理與應用 Principles and Applications of Light-emitting Diode,第二版,五南圖書出版股份有限公司,台北,台灣,pp.102-136,2012。 [24] A. Krost, A. Dadgar, G. Strassburger, R. Clos, “GaN-based epitaxy on silicon: stress measurements”, phys. Stat. sol. No. 6, pp. 26-35, 2003. [25] A. Dadgar at al, “Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon”, phys. Stat. sol. No. 6, pp. 1583-1606, 2003.
摘要: The main goal of this research is to develop in-situ monitoring technology of GaN-based materials grown by metalorganic chemical vapor deposition (MOCVD) for epilayer stress measurement. Using this technique, we can understand the stress variation between the wafer and epitaxial film while temperature decreases from growing temperature to room temperature.Because the different thermal expansion coefficient between the GaN epilayer and substrate, it will lead to wafer bending, cracking and reducing the yield rate of devices. New nondestructive measurement technique using simple optical system and LabVIEW program have been constructed. A new concept to establish the triangular relationships among the incident a collimated laser beam to wafer and a collected reflected laser spot position sensitive detector (PSD).The results are discussed in two directions: First, in-situ monitoring system was used to measure the curvature variation of GaN on sapphire during the epilayer growth. It will be compared with that of GaN grown on sapphire by Aixtron 200/4RF-S MOCVD system with Epi-curve-TT. The results indicate the measured curve by homemade system presents the same tendency measured by Epi-curve-TT. Second, comparison the epilayer curvature measured by in-situ monitoring system and ROC Tencor FLX-2320, the error of R in % is about 7.018. As mentioned above, the present research has successfully developed an in-situ curve measured system for GaN MOCVD epitaxial equipment in real-time monitoring system. Keyword: in-situ monitor, metal organic chemical vapor deposition, position sensitive detector, GaN
本論文主題是開發氮化鎵(GaN)有機金屬化學氣相沉積(MOCVD)磊晶設備之即時自動化應力監控量測技術,利用此量測技術可以了解 MOCVD 磊晶片在磊晶過程中,因基板材料與磊晶膜熱膨脹係數不相同,造成磊晶薄膜從成長溫度降回常溫過程中,因熱膨脹係數差異過大而產生晶片彎曲、龜裂,進而影響元件特性與良率。本技術利用簡單的光學系統和程式控制來建構一個新的非破壞性與即時監控的測量技術,採用一種新的概念來建構雷射與磊晶片之間的關係。系統包括發射光訊號之半導體雷射、偵測訊號之位置感測器、訊號處理電路與分析訊號之軟體。本文將以兩方面進行討論,首先對即時監控系統量測在藍寶石基板成長 GaN 的完整曲率,將搭配 Aixtron 200/4RF-S 機台上(Epi-curve-TT)量測到的 曲 率 趨 勢 進 行 比 對 分 析 。 其 次 使 用 即 時 監 控 系 統 與 商 用 Tencor FLX-2320 測量相同磊晶片的曲率半徑,兩者誤差值約為 7.018%。此系統量測之曲率並與商售測量機台進行磊晶片曲率半徑的驗證。由結果證實已可準確監控 GaN MOCVD 磊晶時的曲率變化。 關鍵詞:即時監控、有機金屬化學氣相沉積系統、位置感測器、氮化鎵
URI: http://hdl.handle.net/11455/91785
文章公開時間: 10000-01-01
顯示於類別:精密工程研究所

文件中的檔案:
檔案 描述 大小格式 
nchu-103-7101067019-1.pdf5.53 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。