Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91787
標題: Ab-initio Study of Elastic Properties and Copper Diffusion in (AlCrTiZr)N High-Entropy Alloys
第一原理計算(AlCrTiZr)N高熵合金之彈性性質與銅擴散研究
作者: Yu-Tsen Hsiao
蕭宇岑
關鍵字: ab initio
high-entropy alloys
elastic constant
epitaxial softening
diffusion barrier
第一原理
高熵合金
彈性係數
磊晶軟化
擴散阻障層
引用: [1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured High-Entropy Alloys with Multi-Principal Elements: Novel Alloy Design Concepts and Outcomes,” Advanced Engineering Materials, vol. 6 , pp. 299-303, 2004. [2] U. S. Hsu, U. D. Hung, J. W. Yeh, and S. K. Chen, “Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys,” Materials Science and Engineering A, vol. 460-461, pp. 403-408, 2007. [3] C. Y. Hsu, J. W. Yeh, S. K. Chen, and T. T. Shun, “Wear resistance and high temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition,” Metallurgical and Materials Transactions A, vol. 35A, pp. 1465-1469, 2004. [4] J. Tong, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, “Mechanical performance of the AlxCoCrCuFeNi high entropy alloy system with multiprincipal elements,” Metallurgical and Materials Transactions A, vol. 36A, pp. 1263-1271, 2005. [5] J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements,” Metallurgical and Materials Transactions A, vol. 35A, pp. 2533-2536, 2004. [6] Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution,” Materials Chemistry and Physics, vol. 92, pp. 112-117, 2005. [7] C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, “Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metallurgical and Materials Transactions A, vol. 36, pp. 881-893, 2005. [8] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, pp. 11169-11186, 1996. [9] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, pp. 15-50, 1996. [10] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, vol. 6, pp. 8245-8257, 1994. [11] G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, pp. 1758-1775, 1999. [12] M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, ”Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, vol. 64, pp 1045-1097, 1992. [13] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, ”Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study,” International Journal of Quantum Chemistry, vol. 77, pp 895-910, 2000. [14] J. W. Yeh, “The development of high-entropy alloys,” Hua Kang Journal of Engineering Chinese Culture University, vol. 27, pp. 1-18, 2011. [15] S. Ranganathan, “Alloyed pleasures: multimetallic cocktails,” Current Science, vol. 85, pp. 1404-1406, 2003. [16] J. W. Yeh, S. Y. Chang, Y. D. Hong, S. W. Chen, and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements,” Materials chemistry and physics, vol. 103, pp. 41-46, 2007. [17] M. S. Lucas, L. Mauger, J. A. Munoz, Y. Xiao, A. O. Sheets, S. L. Semiatin, J. Horwath, and Z. Turgut, “Magnetic and vibrational properties of high-entropy alloys,” Journal of Applied Physics, vol. 109, pp. 07E307, 2011. [18] H. P. Chou, Y. S. Chang, S. K. Chen, and J. W. Yeh, “Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys,” Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 163, pp. 184-189, 2009. [19] Y. F. Kao, T. J. Chen, S. K. Chen, and J. W. Yeh, ”Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys,” Journal of alloys and compounds, vol. 488, pp. 57-64, 2009. [20] Y. S. Huang, L. Chen, H. W. Lui, M. H. Cai, and J. W. Yeh, “Microstructure hardness resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy,” Materials Science and Engineering A, vol. 457, pp. 77-83, 2007. [21] C. Y. Hsu, J. W. Yeh, S. K. Chen, and T. T. Shun, “Wear resistance and high-temperature compression strength of fcc CuCoNiCrAl0.5Fe alloy with boron addition,” Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, vol. 35, pp. 1465-1469, 2004. [22] J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and H. C. Chen, ”Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content,” Wear, vol. 261, pp. 513-519, 2006. [23] Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X. L. Wang, L. Yang, K. An and C. T. Liua, “Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy,” Scripta Materialia, vol. 64, pp. 868-871, 2011. [24] Y. J. Zhou, Y. Zhang, Y. L. Wang, and G. L. Chen, “Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties,” Applied Physics Letters, vol. 90, pp. 181904, 2007. [25] Y. L. Chou, J. W. Yeh, and H. C. Shih, “The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments,” Corrosion Science, vol. 52, pp. 2571-2581, 2010. [26] C. Y. Hsua, C. C. Juana, W. R. Wang, T. S Sheuc, J W. Yeh, and S. K. Chen, 'On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys,” Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, vol. 528, pp. 3581-3588, 2011. [27] C. Y. Hsua, T. S Sheuc, J W. Yeh, and S. K. Chen, “Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys,” Wear, vol. 268, pp. 653-659, 2010. [28] C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, and H. C. Shih, “Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments,” Corrosion Science, vol. 50, pp. 2053-2060, 2008. [29] T. H. Yang, R. T. Huang, C. A. Wu, F. R. Chen, J. Y. Gan, J. W. Yeh, and J. Narayan, “Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy,” Applied Physics Letters, vol. 95, pp. 241905, 2009. [30] V. Braic, A. Vladescu, M. Balaceanu, C. R. Luculescu, M. Braic, “Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings,” Surface & Coatings Technology, vol. 211, pp. 117-121, 2012. [31] M. Braic, V. Braic, M. Balaceanu, C.N. Zoita, A. Vladescu, and E. Grigore, “Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering,” Surface & Coatings Technology, vol. 204, pp. 2010-2014, 2010. [32] H. Kleykamp, “Thermodynamic studies on chromium carbides by the electromotive force (emf) method,” Journal of Alloys and Compounds, vol. 321, pp. 138-145, 2001. [33] T. T. Shun and Y. C. Du, “Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy,” Journal of Alloys and Compounds, vol. 478, pp. 269-272, 2009. [34] S. P. Murarka, “Multilevel interconnections for ULSI and GSI era,” Materials Science and Engineering, vol. R19, pp. 87-151, 1997. [35] C. A. Chang, “Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures,” Journal of Applied Physics, vol. 67, pp. 566-569, 1990. [36] L. Stolt and F.M. D''Heurle, “The formation of Cu3Si: marker experiments,” Thin Solid Films, vol. 189, pp. 269-274, 1990. [37] M. A. Nicolet, “Diffusion barriers in thin films,” Thin Solid Films, vol. 52, pp. 415-443, 1978. [38] M. Damayanti, T. Sritharan, S. G. Mhaisalkar, and Z. H. Gan, “Effects of dissolved nitrogen in improving barrier properties of ruthenium,” Applied Physics Letters, vol. 88, pp. 2164-2167, 2006. [39] P. Chen, Z. Xiong, J. Luo, J. Lin, and K. L. Tan, “Interaction of hydrogen with metal nitrides and imides,” Nature, vol. 420, pp. 302-304, 2002. [40] A. Noya and K. Sasaki, “Auger electron spectroscopy study on the characterization and stability of the Cu9Al4/TiN/Si system,” Japanese Journal of Applied Physics., vol. 30, pp. 1760-1763, 1991. [41] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure on diffusion barrier properties in Cu metaHization,” Journal of The Electrochemical Society, vol. 145, pp. 2164-2167, 1998. [42] M. Stavrev, D. Fischer, A. PreuB, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization,” Microelectronic Engineering, vol. 33, pp. 269-275, 1997. [43] K. H. Min, K. C. Chun, and K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization,” Journal of Vacuum Science and Technology B, vol. 14, pp. 3263-3269, 1996. [44] K. T. Nam, A. Datta, S. H. Kim, and K. B. Kim, “Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization,” Applied Physics Letters, vol. 79, pp. 2549-2551, 2001. [45] J. C. Chuang, S. L. Tu, and M. C. Chen, “Sputtered Cr and reactively sputtered CrNx serving as barrier layers against copper diffusion,” Journal of The Electrochemical Society, vol. 145, pp. 4290-4296, 1998. [46] M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films, vol. 339, pp. 290-293, 1999. [47] L. Krusm-Elbaum, M. Wittmer, C. Y. Ting, and J. J. Cuomo, “ZrN diffusion barrier in aluminum metallization schemes,” Thin Solid Films, vol. 104, pp. 81-87, 1983. [48] M. B. Takeyama, A. Noya, and K. Sakanishi, “Diffusion barrier properties of ZrN films in the Cu/Si contact systems,” Journal of Vacuum Science and Technology B, vol. 18, pp. 1333-1337. 2000. [49] S. Y. Chang, M. K. Chen, and D. S. Chen, “Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization,” Journal of The Electrochemical Society, vol. 156, pp. 37-42, 2009. [50] S. Y. Chang and D. S. Chen, “Ultrathin (AlCrTaTiZr)Nx/AlCrTaTiZr bilayer structures with high diffusion resistance for Cu interconnects,” Journal of the Electrochemical Society, vol. 157, pp. 154-159, 2010. [51] S. Y. Chang and D. S. Chen, “(AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900°C,” Materials Chemistry and Physics, vol. 125, pp. 5-8, 2011. [52] C. H. Lai, S. J. Lin, J.W. Yeh, and S. Y. Chang, “Preparation and characterization of AlCrTaTiZr multi-element nitride coatings,” Surface & Coatings Technology, vol. 201, pp. 3275-3280, 2006. [53] M. H. Tsai, J. W. Yeh, and J. Y. Gan, “Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon”, Thin Solid Films, vol. 516, pp. 5527-5530, 2008. [54] P. Hohenberg and W. Kohn, ”Inhomogeneous Electron Gas,” Physical Review, vol. 136, pp. B864-871, 1964. [55] W. Kohn and L. J. Sham, ”Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, vol.140, pp. A1133-1138, 1965. [56] J. P. Perdew and Y. Wang, “Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Physical Review B, vol. 33, pp. 8800-8802, 1986. [57] J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Physical Review B, vol. 46, pp. 6671-6687, 1992. [58] J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996. [59] V. Ozolins, C. Wolverton, and A. Zunger, ”Strain-induced change in the elastically soft direction of epitaxially grown face-centered-cubic metals,” Applied Physics Letters, vol. 72, pp. 427-429, 1998. [60] C. N. Varney, G.L.W. Hart, and C. Wolverton, ”A coherency strain model for hexgonal-close-packed alloys,” TMS Letters, vol. 1, pp 35-36, 2004. [61] T. A. Halgren and W. N. Lipscomb “The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States,” Chemical Physics Letters, vol. 49, pp. 225-232, 1977. [62] S. Y Lin, S. Y. Chang, Y. C. Huang, F. S. Shieu, and J. W. Yeh, “Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias,” Surface & Coatings Technology, vol. 206 , pp. 5096-5102, 2012. [63] S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, “Different approaches to superhard coatings and nanocomposites,” Thin Solid Films, vol. 476, pp. 1-29, 2005. [64] P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, “Microstructural design of hard coatings,” Progress in Materials Science, vol. 51, pp. 1032-1114, 2006. [65] R.F. Zhang and S. Veprek, “Phase stabilities and spinodal decomposition in the Cr1-xAlxN system studied by ab initio LDA and thermodynamic modeling: Comparison with the Ti1-xAlxN and TiN/Si3N4 systems,” Acta Materialia, vol. 55, pp. 4615-4624, 2007. [66] Q. Lia, I. W. Kim, S. A. Barnett, and L. D. Marks, “Structures of AlN/VN superlattices with different AlN layer thicknesses,” Journal of materials research, vol. 17, pp. 1224-1231, 2002. [67] A. J. Wang, S. L. Shang, Y. Dua, Y. Kong, L. J. Zhang, L. Chen, D. D. Zhao, and Z. K. Liu, “Structural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations,” Computational Materials Science, vol. 48, pp. 705-709, 2010. [68] J. Kim and S. Kang, “Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations,” Journal of Alloys and Compounds, vol. 528, pp. 20– 27, 2012. [69] L. Hultman, J. E. Sundgren, and J. E. Greene, “Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films”, Journal of Applied Physics, vol. 66, pp. 536-544, 1989. [70] S. Ikeda, S. Gilles, and B. Chenevier, “Electron microscopy analysis of the microstructure of Ti1−xAlxN alloy thin films prepared using a chemical vapour deposition method,” Thin Solid Films, vol. 315, pp. 257-262, 1998. [71] P. Djemia, M. Benhamida, Kh. Bouamama, L. Belliard, D. Faurie, and G. Abadias, “Structural and elastic properties of ternary metal nitrides TixTa1−xN alloys First-principles calculations versus experiments,” Surface & Coatings Technology, vol. 215, pp. 199-208, 2013. [72] D. G. Sangiovanni, V. Chirita, and L. Hultman, “Electronic mechanism for toughness enhancement in TixM1−xN (M=Mo and W),” Physical Review B, vol. 81, pp. 104107, 2010. [73] P. Lazar and J. Redinger, “Density functional theory applied to VN/TiN multilayers,” Physical Review B, vol. 76, pp. 174112, 2007. [74] W. Chen and J. Z. Jiang, “Elastic properties and electronic structures of 4d- and 5d-transition metal mononitrides,” Journal of Alloys and Compounds, vol. 499, pp. 243-254, 2010. [75] A. F. Guillermet, J. Haglund, G. Grimvall, and M. Smith, “Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure,” Physical Review B, vol. 45, pp. 11557, 1992. [76] C. P. Liu, H. G. Yang, “Systematic study of the evolution of texture and electrical properties of ZrNx thin films by reactive DC magnetron sputtering,“ Thin Solid Films, vol. 444, pp. 111-119, 2003. [77] S. Park, J. Jung, S. Kang, B.W. Jeong, C.K. Lee, and J. Ihm, “The carbon nonstoichiometry and the lattice parameter of (Ti1−xWx)C1−y,” Journal of the European Ceramic Society, vol. 30, pp. 1519-1526, 2010. [78] L. Karlsson, L. Hultman, M.P. Johansson, J.E. Sundgren, and H. Ljungcrantz, “Growth, microstructure, and mechanical properties of arc evaporated TiCxN1−x (0≤x≤1) films,” Surface and Coatings Technology, vol. 126, pp. 1-14, 2000. [79] S. K. R. Patil, N. S. Mangale, S.V. Khare, and S. Marsillac, “Super hard cubic phases of period VI transition metal nitrides First principles investigation,” Thin Solid Films, vol 517, pp. 824-827, 2008. [80] L. E. Koutsokeras, G. Abadias, Ch. E. Lekka, G. M. Matenoglou, D. Anagnostopoulos, G.A. Evangelakis, and P. Patsalas, “Conducting transition metal nitride thin films with tailored cell sizes: The case of δ-TixTa1−xN,” Applied Physics Letters, vol. 93, pp. 011904, 2008. [81] C. S. Shin, Y. W. Kim, D. Gall, J. E. Greene, and I. Petrov, “Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition,” Thin Solid Films, vol. 402, pp. 172-182, 2002. [82] J. Li, X. Wang, K. Liu, D. Li, and L. Chen, “Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride,” Journal of superhand materials, vol. 33, pp. 173-178, 2011. [83] M.G. Brik and C. G. Ma, “First-principles studies of the electronic and elastic properties of metal nitrides XN(X = Sc, Ti, V, Cr, Zr, Nb),” Computational Materials Science, vol. 51, pp. 380-388, 2012. [84] K. Suzukia, T. Kanekob, H. Yoshidab, Y. Obib, and H. Fujimorib, “Synthesis of the compound CrN by DC reactive sputtering”, Journal of Alloys and Compounds, vol. 280, pp. 294-298, 1998. [85] S. Saib and N. Bouarissa, “Electronic properties and elastic constants of wurtzite, zinc-blende and rocksalt AlN,” Journal of Physics and Chemistry of Solids, vol. 67, pp. 1888-1892, 2006. [86] Z. Wu, X. J. Chen, V. V. Struzhkin, and R. E. Cohen, “Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles,” Physical Review B, vol. 71, 214103, 2005. [87] D. Bocharov, D. Gryaznov, Yu.F. Zhukovskii, and E.A. Kotomin,” Ab initio simulations of oxygen interaction with surfaces and interfaces in uranium mononitride,” Journal of Nuclear Materials, vol. 435, pp. 102-106, 2013.
摘要: We relied on ab initio calculations and density functional theoryto study thelattice constant, elastic constant, bulk modulus,epitaxial softening,and transition state of diffusion barrierfor(AlCrTiZr)Nhigh-entropy alloys.In addition, the elastic properties and preferred orientation of AlN, TiN, CrN, ZrN, TaN, and TiC were calculated and compared with those of (AlCrTiZr)N high-entropy alloys. This study shows that bulk modulus and epitaxial softening were very similar for TiN, ZrN, TiC, and (AlCrTiZr)N high-entropy alloys. Furthermore, three different pathways about how Cu atoms diffuse through barrier within (AlCrTiZr)N high-entropy alloys were proposed in this work. The corresponding calculations imply that Cu atoms could either migrate over barrier or be stuck in the transition state.
本研究係基於第一原理密度泛函理論針對(AlCrTiZr)N高熵合金晶格常數、彈性係數、體積模數、磊晶軟化以及擴散阻障層之過渡態進行研究,並且與氮化鋁、氮化鈦、氮化鉻、氮化鋯、氮化鉭及碳化鈦六種化合物的彈性性質與磊晶擇優成長方向進行比較,由計算結果顯示(AlCrTiZr)N高熵合金與氮化鈦、氮化鋯及碳化鈦具有相近的不可壓縮量與磊晶軟化程度。緊接著我們對於(AlCrTiZr)N高熵合金的擴散阻障層建立了三種不同銅原子的擴散路徑,最後的結果說明銅原子除了須克服能障才能進行擴散外,亦可能陷入過渡態之位置而導致擴散停止進行。
URI: http://hdl.handle.net/11455/91787
文章公開時間: 2016-11-18
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.