Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91788
DC FieldValueLanguage
dc.contributor劉柏良zh_TW
dc.contributor.authorYen-Chiao Tsaien_US
dc.contributor.author蔡炎鉸zh_TW
dc.contributor.other精密工程學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-11T07:28:09Z-
dc.identifier.citation[1] Z. B. Kamarei, “Analysis for Science Librarians of the 2014 Nobel Prize in Physics: Invention of Efficient Blue-Light-Emitting Diodes,” Science & Technology Libraries, Vol. 34, pp. 19-31, 2015. DOI: 10.1080/0194262X.2014.1003438 [2] S. Nakamua, M. Senoh, and T. Mukai, “High-power lnGaN/GaN double-heterostructure violet light emitting diodes,” Applied Physics Letters, Vol. 62, pp. 2390, 1993. DOI: 10.1063/1.109374 [3] S. Zhou, H. Wang, Z. Lin, L. Zhong, Y. Lin, W. Wang, W. Yang, X. Hong, and G. Lia “Design of Wide-Bottomed Patterned Sapphire Substrates for Performance Improvement of GaN-Based Light-Emitting Diodes” ECS Journal of Solid State Science and Technology, Vol. 3, pp. R200-R206, 2014. DOI: 10.1149/2.0041411jss [4] S. K. Rhee, “Critical Surface Energies of Al2O3 and Graphite,” Journal of the American Ceramic Society, Vol. 55, pp. 300-303, 1972. DOI: 10.1111/j.1151-2916.1972.tb11289.x [5] Y. Chen, C. Ouyang, S. Shi, Z. Sun, and L. Songa, “Density functional theory study of Ir atom deposited on γ -Al2O3 (001) surface,” Physics Letters A, Vol. 373, pp. 277-281, 2009. DOI: 10.1016/j.physleta.2008.11.016 [6] I. Levin, and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc, Vol. 81, pp. 8, 1995–2012 1998 [7] J. Cai, B. Xu, and G. Ling, “Observation on the Interface of α-Al2O3/Cr2O3: Prepared by oxidation of Al45Cr7,” Applied Surface Science, Vol. 268, pp.111-116, 2013. DOI: 10.1016/j.apsusc.2012.12.013 [8] J. Sun, T. Stirner, and A. Matthews, “Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α-Cr2O3,” Surface & Coatings Technology, Vol. 201, pp. 4205-4208, 2006. DOI: 10.1016/j.surfcoat.2006.08.061 [9] Y. You, A. Ito, and T. Goto, “Highly (001)-oriented α-Al2O3 films prepared by laser chemical vapor deposition,” Materials Letters, Vol. 106, pp. 11-13, 2013. DOI: 10.1016/j.matlet.2013.04.113 [10] A. Chatterjee, S. Niwa, F. Mizukami, “Structure and property correlation for Ag deposition onα-Al2O3—a first principle study,” Journal of Molecular Graphics and Modelling, Vol. 23, pp. 447-456, 2005. DOI: 10.1016/j.jmgm.2005.01.002 [11] J. Sun, T. Stirner, and A. Matthews, “Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α-Cr2O3,” Surface & Coatings Technology, Vol. 201, pp. 4205-4208, 2006. DOI: 10.1016/j.surfcoat.2006.08.061 [12] S. B. Zhang, and S-H. Wei, “Surface Energy and the Common Dangling Bond Rule for Semiconductors,” Phys Rev Lett, Vol. 92, pp. 08-27, 2004. DOI: 10.1103/PhysRevLett.92.086102 [13] C. Verdozzi, D. R. Jennison, P. A. Schultz, and M. P. Sears, “Sapphire (0001) Surface, Clean and with d-Metal Overlayers,” Sandia National Laboratories, Albuquerque, Vol. 82, pp. 87185-1413, 1998. DOI: 10.1103/PhysRevLett.82.799 [14] P. L. Liu, Y. J. Siao, and Y. T. Wu, “Ab initio Study of Atomic Hydrogen on ZnO Surfaces,” Applied Physics Express, Vol. 4, pp. 125601, 2011. DOI: 10.1143/APEX.4.125601 [15] D. P. Song, Y. C. Liang, M. J. Chen, and Q. S. Bai, “Molecular dynamics study on surface structure and surface energy of rutile TiO2 (1 1 0),” Applied Surface Science, Vol. 255, pp. 5702-5708, 2009. DOI: 10.1016/j.apsusc.2008.12.062 [16] W. Kohn, and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, Vol. 140, pp. 1133, 1965. DOI:/10.1103/PhysRev.140.A1133 [17] H. Eschrig, “The Fundamentals of Density Functional Theory,” Institute for Solid State and Materials Research Dresden and University of Technology Dresden, Vol. 32, pp. 0233-0911, 1996. DOI: 10.1007/978-3-322-97620-8 [18] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045, 1992. DOI: 10.1103/RevModPhys.64.1045 [19] P. L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “First-principles studies of GaN(0001) heteroepitaxy on ZrB2(0001),” Physical Review B, Vol. 72, pp. 245335, 2008. DOI: 10.1103/PhysRevB.72.245335 [20] J. M. McHale, A. Auroux, A. J. Perrotta, and A. Navrotsky, “Surface energies and thermodynamic phase stability in nanocrystalline aluminas,” New Series, Vol. 277, pp. 788-791, 1997. DOI: 10.1126/science.277.5327.788 [21] W. C. Mackrodt, R. J. Davey, and S. N. Black, “The morphology of α-Al2O3 and α-Fe2O3: the importance of surface relaxation,” Journal of Crystal Growth, Vol. 80, pp. 441-446, 1987. DOI: 10.1016/0022-0248(87)90093-5 [22] S. Q. Zhoua, X. H. Jua, F. Q. Zhaoc, and S. Y. Xuc, “Periodic DFT study of adsorption of nitroamine molecule on alpha-Al2O3(0 0 1)surface,” Applied Surface Science, Vol. 258, pp. 7334-7342, 2012. DOI: 10.1016/j.apsusc.2012.03.187 [23] I. G. Batirev, A. Alavi, and M. W. Finnis, “First-Principles Calculations of the Ideal Cleavage Energy of Bulk Niobium (111) ya-Alumina (0001) Interfaces” Physical Review Letters, Vol. 82, pp. 1510, 1999. DOI: 10.1103/PhysRevLett.82.1510zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/91788-
dc.description.abstractIn this thesis, for the purpose of understandng the atoms and electronic structure of alumina (Al2O3) material, the nanomaterials α-Al2O3 surface energy were researched by first-principles calculations based on density functional theory. The results show surface energy films epitaxially grown on the formation of aluminum oxide (α-Al2O3) substrate. The α-Al2O3(001) surface has the lowest surface energy of 0.1437 eV/Å2 under Al-rich.en_US
dc.description.abstract本論文係以第一原理(First-principles)計算基於密度泛函理論(Density functional theory, DFT)研究奈米材料氧化鋁(α-Al2O3)表面能,分析α- Al2O3(001)薄膜表面能和化學勢變化關係,以瞭解α- Al2O3(001)材料的原子和電子結構特性,結果顯示α- Al2O3(001)在Al-rich時具有最低表面能0.1437 eV/Å2。zh_TW
dc.description.tableofcontents誌謝..............................................I 摘要..................................II Abstract..................................III 目錄..................................IV 表目錄..................................V 圖目錄..................................VI 第一章 緒論..................................1 1.1 前言..................................1 1.2 研究動機與目的..................................1 1.3 論文架構..................................2 第二章 背景介紹與文獻回顧..................................3 2.1 前言..................................3 2.2 氧化鋁材料發展歷史..................................3 2.3 材料表面能介紹..................................4 第三章 計算方法..................................9 3.1 前言..................................9 3.2 HohenbergKohnTheorem..............................11 3.3 Kohn-Sham Equation..............................12 3.4 贗勢..................................13 3.5 表面能公式..................................14 第四章 氧化鋁α-Al2O3(001)表面能計算....................17 4.1 前言..................................17 4.2 計算設定與模型建構..................................17 4.3 結果與討論..................................19 4.3.1 α-Al2O3之表面能研究............................19 4.3.2 鍵長分析..................................20 4.4 結論..................................21 第五章 總結論..................................37 參考文獻..................................38zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subjectfirst-principlesen_US
dc.subjectDFTen_US
dc.subjectsurface energy.en_US
dc.subject第一原理計算zh_TW
dc.subject密度泛函理論zh_TW
dc.subject氧化鋁zh_TW
dc.subject表面能zh_TW
dc.titleAb-initio Study on α-Al2O3(001) Surface Energyen_US
dc.title第一原理計算α-Al2O3(001)表面能研究zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-09-01zh_TW
dc.date.openaccess10000-01-01-
Appears in Collections:精密工程研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.