Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91790
標題: Adiabatic Fiber Taper with Incorporated an Air-gap Microcavity Fiber Fabry-Perot Interferometer
緩變錐形熔拉光纖微型空腔之Fabry-Perot干涉儀
作者: Ching-I Tai
戴菁儀
關鍵字: Adiabatic tapered fibers
Fiber Fabry-Perot interferometer
緩變錐形熔拉光纖
Fabry-Perot光纖干涉儀
引用: [1] Y. K. Chen, “Recent advances in photonic integrated circuits for optical fiber communications,” The 16th Opto-Electronics And Communications Conference (OECC), pp. 3, 2011. [2] B. I. Bluestein, I. M. Walczak, S. Y. Chen, “Fiber optic evanescent wave immunosensors for medical diagnosticsm,” Trends in Biochemical Sciences, vol. 8, pp. 161-168, 1990. [3] E. Cibula, D. Donlagic, and C. Stropnik, “Miniature fiber optic pressure sensor for medical applications,” Proceedings of IEEE Sensors, pp. 711-714, 2002. [4] E. Pinet, A. Pham, and S. Rioux, “Miniature fiber optic pressure sensor for medical applications: an opportunity for intra-aortic balloon pumping (IABP) therapy,” 17th International Conference on Optical Fibre Sensors, pp. 234-237, 2005. [5] A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical fiber sensors embedded into medical textiles for healthcare monitoring,” IEEE Sensors Journal, vol. 8, pp. 1215-1222, 2008. [6] R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “All-single-mode fiber-optic gyroscope with long-term stability,” Optics Letters, vol. 6, pp. 502-504, 1981. [7] B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Applied Physics Letters, vol. 73, pp. 735-737, 1998. [8] H. Chung, L. Ojeda, and J. Borenstein, “Sensor fusion for mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope,” IEEE International Conference on Robotics & Automation (ICRA), pp. 3588-3593, 2001. [9] Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Applied Optics, vol. 42, pp. 3509-3515, 2003. [10] K. R. Cooper, J. Elster, M. Jones, and R. G. Kelly, “Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft,” IEEE Systems Readiness Technology Conference, pp. 847-856, 2001. [11] ElectroniCast, “Fiber Optic Sensors Global Market Forecast & Analysis 2011-2016,” for 2013. [12] W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Optics Letters, vol. 31, pp. 2547-2549, 2006. [13] Q. Wang, and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Optics Letters, vol. 31, pp. 317-319, 2006. [14] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, pp. 1035-1037, 1993. [15] D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Philosophical Transactions Of The Royal Society A, vol. 301, pp. 1702-1704, 2003. [16] J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Optics Express, vol. 12, pp. 1313-1319, 2004. [17] J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He,'Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor', IEEE Technology Letters, vol. 17, pp.1247 -1249, 2005. [18] J. R. Clowes, S. Syngellakis, and M. N. Zervas, 'Pressure sensitivity of side-hole optical fiber sensors, ' IEEE Photonics Technology Letters, vol. 10, , pp. 857-859,1998. [19] N. K. Chen, and Z. Z. Feng, “High precision fiber-optic inclinometer based on abrupt-tapered Mach-Zehnder interferometers,” Fifth International Conference on Sensing Technology (ICST), pp. 303-306, 2011. [20] M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry–Perot pressure sensors in aerodynamics applications,” IEEE Sensors Journal, vol. 3, pp. 102-107, 2003. [21] S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Applied Physics Letters, vol. 46 ,pp. 1953-1962 , 2007. [22] J. M. Hsu, C. L. Lee, P. J. Huang, C. H. Hung, and P. Y. Tai, “Temperature sensor with enhanced sensitivity based on photonic crystal fiber interferometer with material overlay,” IEEE Photonics Technology Letters, vol. 24, pp. 1761-1764, 2012. [23] K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Applied Physics Letters, vol. 85, pp. 4231-4233, 2004. [24] P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Applied Physics Letters, vol. 94, pp. 131110(1-3), 2009. [25] C. Y. Lin ,and L. A. Wang, “A wavelength-and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photonics Technology Letters, vol. 13, pp. 332-334, 2002. [26] M. Das, and K. Thyagarajan, “ Dispersion compensation in transmission using uniform long period fiber gratings,” Optics Communications, vol. 190, pp. 159-163, 2001. [27] E. M. Dianov, D. S. Stardubov, S. A. Vasiliev, A. A. Frolov, and O. I. Medvedkov, “Refractive-index gratings written by near-ultraviolet radiation,” Optics Letters, vol. 24, pp. 221-223, 1997. [28] Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses, ” Journal Of Lightwave Technology, vol. 21, pp. 1320-1327, 2003. [29] G. A. C. Sevilla, D. M. Hernandez, I. T. Gomez, A. M. Rios, “Mechanically induced long-period fiber gratings on tapered fibers,” Optics Communications, vol. 282, pp. 2823-2826, 2009. [30] H. Y. Wang, S. M. Chuo, C. Y. Huang, and L. A. Wang, “Embedded corrugated long-period fiber gratings for sensing applications,” Applied Optics, vol. 51, pp. 1453-1458, 2012. [31] Y. Wang, D. N. Wang, M. Yang, and C. R. Liao, “Asymmetric microhole-structured long-period fiber gratings,” Sensors And Actuators B: Chemical, vol. 160, pp. 822-825, 2011. [32] Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photonics Technology Letters, vol. 12, pp. 519-521, 2000. [33] H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Optics Letters, vol. 35, pp. 85-87, 2010. [34] M. S. Yoon, H. J. Kim, S. J. Kim, and Y. G. Han, “Influence of the waist diameters on transmission characteristics and strain sensitivity of microtapered long-period fiber gratings,” Optics Letters, vol. 38, pp. 2669-2672, 2013. [35] W. Ding, and S. R. Andrews, “Modal coupling in surface-corrugated long-period-grating fiber tapers,” Optics Letters, vol. 33, pp. 717-719, 2008. [36] G. Kakarantzas, T. A. Birks, and P. S. Russell, “Structural long-period gratings in photonic crystal fibers,” Optics Letters, vol. 27, pp. 1013-15, 2002. [37] L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Optics Express, vol. 20, pp. 18079-18084, 2012. [38] J. Bures, F. Leonard, J. P. Monchalin, “Utilisation d''une ligne de microphotodiodes en spectroscopie dispersive: application a la detection du NO2,” Canadian Journal Of Physics, vol. 61, pp. 301-304, 1983. [39] W. K. Burns, M. Abebe, and C. A. Villarruel, “Parabolic model for shape of fiber taper,” Applied Optics, vol. 24, pp. 2753-2755, 1985. [40] R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electronics Letters, vol. 27, pp. 1654-1656, 1991. [41] T. A. Birks, and Y. W. Li, “The shape of fiber tapers,” Journal Of Lightwave Technology, vol. 10, pp. 432-438, 1992. [42] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, vol. 426, pp. 816-819, 2003. [43] S. Pricking, and H. Giessen, “Tapering fibers with complex shape,” Optics Express, vol. 18, pp. 3426-3437, 2010. [44] N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Optics Express, vol. 18, pp. 7596-7601, 2010. [45] M. Cai, P. O. Hedekvist, A. Bhardwaj, and K. Vahala, “5-Gbit/s BER performance on an all fiber-optic add/drop device based on a taper-resonator-taper structure,” IEEE Photonics Technology Letters, vol. 12, pp. 1177-1179, 2000. [46] S. Lacroix, F. Gonthier, and J. Bures, “All-fiber wavelength filter from successive biconical tapers,” Optics Letters, vol. 11, pp. 671-673, 1986. [47] T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Optics Letters, vol. 25, pp. 1415-1417, 2000. [48] H. Kuwahara, M. Sasaki, and N. Tokoyo, “Efficient coupling from semiconductor lasers into single-mode fibers with tapered hemispherical ends,” Applied Optics, vol. 19, pp. 2578-2583, 1980. [49] C. L. Lee, C. Y. Tai, C. L. Chen, and P. Han, “Adiabatic fiber microtaper with incorporated an air-gap microcavity fiber Fabry-Perot interferometer,” Applied Physics Letters, vol. 103, pp. 033515(1-4), 2013. [50] R. A. Thompson, “Taper tool for tapering fiber conduit or pipe in the field,” United States Patent Office, 2746497, 1956. [51] J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” Journal Of Lightwave Technology, vol. 4, pp. 1071-1089, 1986. [52] B. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Optics Letters, vol. 6, pp. 327-328, 1981. [53] B. D. Gupta, A. Sharma, and C. D. Singh, “Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region,” Optical Engineering, vol. 33, pp. 1864-1868, 1994. [54] J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photonics Technology Letters, vol. 11, pp. 1429-1430, 1999. [55] M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Physical Review Letters, vol. 85, pp. 74-77, 2000. [56] A. K. Goyal, P. Gavrilovic, and H. Po, “1.35 W of stable single-frequency emission from an external-cavity tapered oscillator utilizing fiber Bragg grating feedback,” Applied Physics Letters vol. 73, pp. 575-577, 1998. [57] J. D. Love, W. M. Henry, W. J. Stewart, R. H. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria. ” IEE Proceedings J (Optoelectronics), vol. 138 , pp. 343-354, 1991. [58] Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Optics Letters, vol. 33, pp. 1105-1107, 2008. [59] W. J. Bock, J. Chen, P. Mikulic, and T. Eftimov, “A novel fiber-optic tapered long-period grating sensor for pressure monitoring,” IEEE Transactions On Instrumentation And Measurement, vol. 56, pp. 1176-1180, 2007. [60] L. M. N. Amaral, O. Frazao, J. L. Santos, and A. B. L. Ribeiro, “Fiber-optic inclinometer based on taper Michelson interferometer,” IEEE Sensors Journal, vol. 11, pp. 1811-1814, 2011. [61] C. M. Li, Y. L. Hsiao, C. F. Lee, and C. L. Lee, “In-fiber optical airflow sensor based on a tapered fiber interferometric cantilever,” 17th Opto-Electronics And Communications Conference (OECC), pp. 639-640, 2012. [62] C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Applied Physics Letters, vol. 101, pp. 023502(1-4), 2012. [63] Z. Tian, and S. S. H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photonics Technology Letters, vol. 21, pp. 161-163, 2009. [64] H. H. Gao, D. L. Kaplan, Z. Chen, J. Kumar, and S. K. Tripathy, “Tapered fiber tips for optic biosensors,” Optical Engineering, vol. 34, pp. 34665-34671, 1995. [65] B. Lee, “Review of the present status of optical fiber sensors,” Optical Fiber Technology , vol. 9, pp. 57-79, 2003. [66] M. J. Adams, “An introduction to optical waveguides,” Optica Acta: International Journal of Optics, vol. 29, pp. 252-253, 1984. [67] M. N. Kronick, and W. A. Little, “A new immunoassay based on fluorescence excitation by internal reflection spectroscopy,” Journal Of Immunological Methods, vol. 8, pp. 235-240, 1975. [68] P. K. Cheo, “Thin-film waveguide devices,” Applied Physics, vol. 6, pp. 1-19, 1975. [69] D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic, vol. 2, pp. 764-774, 2001. [70] J. P. Golden, G.P. George, P. Anderson, S.Y. Rabbany, and F.S. Ligler, “An evanescent wave biosensor. II. Fluorescent signal acquisition from tapered fiber optic probes. ” IEEE Transactions on Biomedical Engineering, vol.41, pp. 585-591, 1994. [71] M. Ahmad, and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers.” Biosensors and Bioelectronics, vol.20, pp. 1312-1319, 2005. [72] Leung, A. S. Yan, R. Mutharasan, and M. P. Shankar, “Ultra Sensitive Tapered Fiber Optic Biosensor For Pathogens, Proteins, and DNA. ” U.S. Patent Application 12/162,447, 2007. [73] B. D. Gupta, and C. D. Singh, “Evanescent-absorption coefficient for diffuse source illumination: uniform- and tapered-fiber sensors,” Applied Optics, vol. 33, pp. 2737-2742, 1994 [74] M. N. McLandrich, “Core dopant profiles in weakly fused single-mode fibres. ” Electronics Letters, vol.24, pp. 8-10, 1988. [75] J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” Journal Of Lightwave Technology, vol. 13, pp. 1256-1263, 1995. [76] H. Singh, and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” Journal of Lightwave Technology, vol. 15, pp. 647-653, 1997. [77] Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Optics Letters, vol. 32, pp. 2662-2664, 2007. [78] H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Optics Letters, vol. 33, pp. 2455-2457, 2008. [79] D. W. Duan, Y. J. Rao, W. P. Wen, J. Yao, D. Wu, L. C. Xu, and T. Zhu, “In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing,” Electronics Letters, vol. 47, pp. 401-403, 2011. [80] C. E. Lee, W. N. Gibler , R. A. Atkins, and H. F. Taylor, “In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors,” Journal Of Lightwave Technology, vol. 10, pp. 1376-1379, 1992. [81] J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry-Perot interference,” Journal of Lightwave Technology, vol. 28, pp. 2799-2803, 2010. [82] T. Zhu, T. Ke, Y. Rao, K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Optics Communications, vol. 283, pp. 3683-3685, 2010. [83] Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technology Letters, vol. 17, pp. 2403-2405, 2005. [84] P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Perot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sensors Journal, vol.12, pp. 8-12, 2012. [85] D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Materials and Structures, vol. 12, pp. 1-5, 2003. [86] K. R. Sohn, and G. D. Peng, “Mechanically formed loss-tunable long-period fiber gratings realized on the periodic arrayed metal wires,” Optics Communications, vol. 278, pp. 77-80, 2007. [87] J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic crystal fiber enabled micro Fabry-Perot interferometer,” Optics Letters, vol.34, pp. 2441-2443, 2009. [88] T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Optics Express, vol. 16, pp. 5764-5769, 2008. [89] Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach–Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Optics Letters, vol. 33, pp. 2934-2936, 2008. [90] Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Optics Letters, vol. 30, pp. 1021-1023, 2005. [91] D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry–Perot interferometer sensor”, Optics Letters, vol. 30, pp. 3000-3002, 2005. [92] X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor”, Applied Physics, vol.45, pp.7760-7766, 2006. [93] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser”, Optics Express, vol.15, pp.14123-14128, 2007. [94] C. L. Lee, C. H. Hung, C. M. Li, and Y. W. You. 'Simple air-gap fiber Fabry–Perot interferometers based on a fiber endface with Sn-microsphere overlay.' Optics Communications, vol.285, pp. 4395-4399, 2012. [95] A. Dı́ez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers”, Sensors And Actuators B: Chemical, vol. 73, pp. 95-99, 2001. [96] C. L. Lee, W. F. Liu, Z. Y. Weng, and F. C. Hu, “Hybrid AG-FFPI/RLPFG for simultaneously sensing refractive index and temperature,” IEEE Photonics Technology Letters, vol. 23, pp. 1231-1233, 2011. [97] C. L. Lee, Z. Y. Weng, C. J. Lin, and Y. Y. Lin, “Leakage coupling of ultrasensitive periodical silica thin-film long-period grating coated on tapered fiber,” Optics Letters, vol. 35, pp. 4172-4174, 2010.
摘要: This study proposes a novel and sensitive fiber-optic sensor with valuable application. The sensing mechanism of the fiber sensor is based on an adiabatic single-mode fiber taper whose tapered waist is under a material dispersion control to make the effective index and the propagation characteristics of the fundamental-mode change. It was further incorporated with a simply probe-typed Fabry-Perot interferometer (FFPT) to form a hybrid device that has unique and highly sensitive characteristics of spectrum interference under such the dispersion control. The study has verified that the spectrum of the interference peak power attenuation and material dispersion with varied temperature (T) were significantly changed. The sensing characteristics were highly sensitive by monitoring the power of optical interference fringes at a particular wavelength when measuring the temperature and refractive index of the surrounding. A high sensitivity of +3.65dB/°C to temperature (corresponding the refractive index sensitivity is +9759dB/RIU) has been achieved by the proposed hybrid configuration. Therefore, it can be predicated that a low cost narrowband light source such as a LED or LD would be utilized to replace the expensive broadband light source. Furthermore, the optical spectrum analyzer (OSA) also can be replaced by a photodetector (PD). These advantages are very useful with the great merits for the optical fiber sensing technology.
本研究提出了一種新穎、靈敏具高應用價值的光纖感測器,其感測機制是利用材料色散控制緩變型熔拉單模光纖之錐腰區,使基模的等效折射率及光波傳播特性發生改變,並進一步將其結合一個簡易、探針型之微型Fabry-Perot光纖干涉儀,使此複合式元件在色散控制情況下擁有獨特以及高靈敏的光譜干涉之感測特性。 經實驗證實,本元件能在監控某一特定波長下之干涉條紋,頻譜之干涉峰值功率衰減與材料色散之溫度調變具有非常明顯的變化與感測能力,可用來量測環境的溫度或折射率變化,當監控某一波長峰值功率時,溫度靈敏度可高達到+3.65dB/°C(對應折射率靈敏度為+9759dB/RIU)。因此,若參數感測機制只需監控干涉光頻譜的某一峰值波長時,則預期可以利用一個便宜的窄頻光源例如: LED或LD,可以取代昂貴的寬頻光源,更可利用光功率計取代光譜分析儀,此特性為本研究最具貢獻之特點,具有應用價值性。
URI: http://hdl.handle.net/11455/91790
文章公開時間: 2016-04-10
Appears in Collections:精密工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.