Please use this identifier to cite or link to this item:
標題: Research of Producing Dual-Curvature with Dual-Focus Microlens Array
作者: Jhe-Huan Jhang
關鍵字: lithography process
microlens array
引用: [1] Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, pp. 1281-1284, 1988. [2] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE Photonics Technology Letters, VOL. 6, NO. 9, PP 1112-1114, 1994. [3] M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Applied Optics, vol. 37, pp. 7568-7576, 1998. [4] K. Naessens, H. Ottevaere, P. V. Daele, R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Applied Surface Science, vol. 208-209, pp. 159-164, 2003. [5] C. C. A. Chen, C. M. Chen, and J. R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” Journal of Materials Processing Technology, pp. 194-199, 2007. [6] S. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Optics Express, Vol. 12, pp. 6366-6371, 2004. [7] J. H. Lee, W. S. Choi, K. H. Lee and J. B. Yoon, “A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography,” Journal of Micromechanics and Microengineering, Vol. 18, No. 123015, 2008. [8] H. F. Lin, H. T. Jan, C. F. Chen and H. C. Hsu, “Optical design for enhanced prism type fingerprint scanner image contrast with asymmetrical aspheric lens,” Optic, Vol. 121, pp. 2250-2253, 2010. [9] K. Xu and C. Shi, “The Research of Optical Non-contact Fingerprint Sample Method,” Optics Journal, Vol 1, pp. 31-34, 1994. [10] J. M. Lee, D. H. Lee, and Y. Baek, “Dual-focus dual-layered microlens array,” Opto-Electronics and Communications Conference, vol. 161, pp. 889-890 (2012). [11] J. M. Lee, D. H. Lee, and Y. Baek, “Fabrication of dual-focus dual-layered microlens.” Optics Communications, vol. 289, pp. 69-74 (2013). [12] E.Hecht, Optics 4th, Addsion Wesley, 2002. [13] 張益宗,利用擴散微影法探討微透鏡外形成型之研究,中興大學精密工程 所碩士論文,2013。 [14] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Applied Optics, vol. 24, pp. 2520-2525, 1985. [15] F. M. Grimaldi, Adnexis, Bernia, 1665. [16] 林煒晟,軟式變焦鏡頭設計與製作,台灣科技大學機械工程系碩士論文, 2006。 [17] 張博森,非對稱微透鏡陣列之製程設計與開發,中興大學精密工程所碩士 論文,2012。 [18] C. P. Lin, H. H. Yang and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 748-757, 2003. [19] P. Nussbaumyx, R. V. Olkely, H. P. Herzigy, M. Eisnerz and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics, Vol. 6, pp. 617-636,1997. [20] J. M. Kang, M. K. Wei, H. Y. Lin, J. H. Lee, H. Y. Lin, J. H. Tsai, T. C. Wu, “Shape-controlled microlens arrays fabricated by diffuser lithography,” Microlectronic Engineering, pp. 1420-1423, 2010.
摘要: This paper is to explore a dual-curvature with dual-focus microlens array fabrication by diffuser lithography process. First part is to combine the diffuser lithography and hot-melt method by using JSR-126 and AZ-4620 photoresists to produce dual-layered microlens array. Second part is to design different sizes of upper and lower masks, as well as simulation and measurement. In first part, the research is to produce lower curve microlens by using diffuser lithography and JSR-126 negative photoresist. Then upper curve microlens is produced by using melt method and AZ-4620 positive photoresist. The research is exploring related dimensions of lower layer and upper layer masks for such dual curvature microlens, and using the optical simulation software TracePro to measure the light energy distribution. The results showed combined with the lower layer with 100 μm and upper layer with 75 μm may result in uniform light distribution. It can be concluded the lower and upper mask layers with the 3/4 ratio is the best effect.
本研究使用擴散微影法的製程方式,去探討具有不同曲率的雙層微透鏡陣列,研究分為兩個部份,第一個部分是結合擴散微影法與熱熔法的製程方式,並使用JSR-126負光阻與AZ-4620正光阻來製作雙層微透鏡。第二部分為設計不同的上下層光罩尺寸,並進行模擬量測。在第一部分中,以擴散微影法與JSR-126負光阻製作下層微透鏡,再以熱熔法與AZ-4620正光阻製作上層微透鏡,此法具有製程簡易與成形快速之優點。而在第二步是去探討上下層光罩尺寸的搭配,再利用光學模擬軟體TracePro去量測其光能量分布,發現下層100 μm、上層為75 μm之尺寸搭配,能量分布最為均勻,推論出上下層比例為3/4之光罩效果最佳,進而得以完成雙層雙焦點之微透鏡陣列。
文章公開時間: 2016-07-03
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.