Please use this identifier to cite or link to this item:
標題: Air Gap Measurement and Spectral Switch Study with Wide Band Source
作者: Tsung-Han Hsieh
關鍵字: broad-band light source
interferometric measurement
spectral swich
引用: [1] B. E. Saleh, and M. C. Teich, “Fundamentals of Photonics”, Wiley, New York, p.66. [2] E. Wolf, “Noncosmological redshifts of spectral lines”, Nature, Vol. 326, pp. 363-365, 1987. [3] E. Wolf, “Redshifts and Blueshifts of spectral lines caused by source correlations”, Optics Communications, vol. 62, pp.12-16, 1987. [4] M. F. Bocko, and D. H. Douglass, “Observation of frequency shifts of spectral lines due to source correlations”, Physical Review Letters, vol. 58, pp. 2649-2651, 1987. [5] D. Faklis, and M. G. Morris, “Spectral shifts produced by source correlations”, vol. 13, pp. 4-6, 1988. [6] J. Hu, H. Zhang, and S. Nemoto, “Spectral shifts and spectral switches of pattially coherent light passing through an aperture”, Optics Communications, vol. 162, pp. 57-63, 1999. [7] P. Han, “Spectral anomalies for a right triangle aperture with an adjustable hypotenuse slop”, Journal of Optics A: Pure and Applied Optics, vol. 11, pp. 015708, 2009. [8] P. Han, “Electro-optic Modulation for Spectral Switches and Phase Singularities of A Double Slit in The Far Field”, Journal of Optics, vol. 13, pp. 035713, 2011. [9] P. Han, “All Optical Spectral Switches”, Optics Letters, vol. 37, pp. 2319-2321, 2012. [10] E. Hecht, Optics, Wesley, New York, pp.66. [11] G. Mudhana, K. S. Park, and S. Y. Ryu and B. H. Lee, “Fiber-optic probe based on a bifuctional lensed photonic crystal fiber for refractive index measurements of liquids”, IEEE Sensors Journal, vol. 11, pp. 1178-1183, 2011. [12] C. L. Lee, C. Y. Tai, C. L. Chen and P. Han, “Adiabatic fiber microtaper with incorporated an air-gap microcavity fiber Fabry-Perot interferometer”, Applied Physics Letters, vol. 103, pp. 035155-1-4, 2013. [13] M. Born, and E. Wolf, “Principles of optics”, Cambridge University Press, New York.
摘要: The thesis contains two parts. The first part: We report a new fiber-type broad-band interferometer configuration to measure small displacement. It uses a broad-band light source. Using the spectral interference fringes produced by the fiber/air and air/glass interfaces, the air-gap distance can be easily determined and determine the displacement. The measurement range is limited by the light source coherence (about several hindered μm) and the sensitivity is limited by the detector wavelength resolution (about 0.01 μm). This scheme has the advantages of time-saving, compact configuration, and easy usage, compared with the traditional Michelson interferometer. The second part: It is also shown that spectral switches can be controlled by simply adjusting the air gap. As the air gap increases, the spectral shifts show gradual change. However, when the air gap approaches a critical value, a rapid spectral switch occurs. The way of using this method to perform the information encoding and transmission is also presented.
本論文的分為兩部分,第一部分為距離干涉儀,主要以光纖為主,光源為寬頻光源,光離開光纖進入自由空間,經由玻璃的反射,重新進入光纖,因為空氣間距而形成光程差,光譜分析儀顯示干涉條紋,由干涉條紋可以判斷空氣間距,此量測方法有別於傳統的麥克森干涉儀,具有快速性,以及儀器縮小化,儀器架設也較為簡單。 第二部分為以第一部的儀器架設為基礎,不同的空氣間距,當空氣間距為特定值時,增加微小的空氣間距,光譜會產生向短波長(藍位移)跳動,相反,減少微小的空氣間距,光譜會產生向長波長(紅位移)跳動,產生光譜開關,因為此現象與訊號邏輯訊號的0或1相似,所以可應用於通訊傳輸。
文章公開時間: 2017-07-23
Appears in Collections:精密工程研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.