Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91869
標題: 金屬誘發結晶法製備薄膜類結晶矽 及太陽能電池應用可行性研究
Preparation of Thin Film Crystalline Si by Metal Induced Crystallization and Possibility Study for Solar Cell Application
作者: Chih-Hsiang Chang
張智翔
關鍵字: 多晶矽
鋁誘發
磊晶
aluminum-induced crystallization
epitaxial
poly-crystalline silicon
引用: [1] 翁敏航, '太陽能電池-原理、元件、材料、製程與檢測技術, 第一章:太陽能電池概論,' 東華書局, 2010. [2] J. Hasen, M. Sato, and R. Ruedy, 'Global Temperature Update Through 2013,' NASA, 2014. [3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop,'Solar Cell Efficiency Tables (version 43),' Progress in Photovoltaics:Research and Applications, vol. 22, pp. 1-9, 2014. [4] 黃惠良,曾百亨, '太陽能電池, 第四章:單晶矽太陽電池,' 五南圖書出版, 2008. [5] G. Wilson and D. Mooney, 'Research Cell Efficiency Records,' Nation Center for Photovoltaics, 2014. [6] J. Zhao, A. Wang, M. Green, and F. Ferrazza, 'Novel 19.8% Efficient “Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells,' Applied Physics Letters, vol. 73, pp. 1991-1993,1998. [7] O. Schultz, S. W. Glunz, and G. P. Willeke, 'Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency,' Progress in Photovoltaics:Research and Applications, vol. 12, pp. 553-558, 2004. [8] J. G. Fossum and F. A. Lindholm, 'Theory of Grain-Boundary Intragrain Recombination Currents in Polysilicon p-n Junction Solar Cells,' IEEE Transactions on Electron Devices, vol. 27, pp. 692-700, 1980. [9] H. C. Card and E. S. Yang, 'Electronic Processes at Frain Boundaries in Polycrystalline Semiconductors under Optical Illumination,' IEEE Transactions on Electron Devices, vol. 24, pp. 397-402, 1977. [10] 戴寶通 and 鄭晃忠, '太陽能電池技術手冊, 第四章:矽薄膜太陽能電池,' 台灣電子材料與元件協會, 2008. [11] W. E. Spear and P. G. LeComber, 'Substitutional doping of amorphous silicon,' Solid State Communications, vol. 17, pp. 1193-1196, 1975. [12] K. Fujimoto, F. Nakabeppu, Y. Sogawa, Y. Okayasu, and K. Kumagai,'Fabrication of Poly-Crystalline Silicon Films Using Plasma Spray Method,' Solar Energy Materials and Solar Cells, vol. 34, pp. 263-270, 1994. [13] R. B. Bergamnn, G. Oswald, M. Albrecht, and V. Gross, 'Solid-Phase crystallizaed Si-Films on Glass Substrates for Thin Film Solar Cells,'Solar Energy Materials and Solar cells, vol. 46, pp. 147-155, 1997. [14] T. Sameshima, H. Watakabe, N. Andoh, and S. higashi, 'Pulsed Laser Annealing of Thin Silicon Films,' Japanese Journal of Applied Physics,vol. 45, pp. 2437-2440, 2006. [15] R. S. Wanger and W. C. Ellis, 'Vapor-Liquid-Solid Mechanism of Single Crystal Grown,' Applied Physics Letters, vol. 4, pp. 89-90, 1964. [16] A. Inoue, Y. Takahashi, C. Suryanarayana, A. Hoshi, and T. Masumoto,'Crystallization-Induced Superconductivity in Amorphous Ti-Ta-Si alloys,' Journal of Materials Science, vol. 16, pp. 3077-3086, 1981. [17] Z. Jin, K. Moulding, H. S. Kwok, and M. Wang, 'The Effects of Extended Heat Treatment on Ni Induced Lateral Crystallization of Amorphous Silicon Thin Films,' IEEE Transactions on Electron Devices, vol. 46, pp. 77-82, 1999. [18] K. U. M. Kumar and M. G. Krishna, 'Chromium-Induced Nanocrystallization of a-Si Thin Films into the Wurtzite Structure,'Journal of Nanomaterials, vol. 2008, p. 736534, 2008. [19] M. A. Mohiddon, K. L.Naidu, M. G. Krishna, G. Dalba, and F.Rocca,'Growth, Optical, and Electrical Properties of Silicon Films Produced by the Metal-Induced Crystallization Process,' Journal of Nanoparticle Research, vol. 13, pp. 5999-6004, 2011. [20] J. F. Li, X. W. Sun, M. B. Yu, G. J. Qi, and X. T. Zen, 'Nickel Induced Lateral Crystallization Behavior of Amorphous Silicon Films,' Applied Surface Science, vol. 240, pp. 155-160, 2005. [21] S. W. Lee, Y. C. Jeon, and S. K. Joo, 'Pd Induced Lateral Crystallization of Amorphous Si Thin Films,' Applied Physics Letters, pp. 1671-1673,1995. [22] W.Knaepen, S. Gaudet, C. Detavernier, R. L. V. Meirhaeghe, J. J. Sweet,and C. Lavoie, 'In Situ X-Ray Diffraction Study of Metal Induced Crystallization of Amorphous Silicon,' Thin Solid Films, vol. 516, pp.4946-4952, 2008. [23] O. N. Nast and S. R. Wenham, 'Elucidation of The Layer Exchange Mechanism in the Formation of Polycrystalline Silicon by Aluminum-Induced Crystallization,' Journal of Applied Physics, vol. 88,pp. 124-132, 2000. [24] M. S. Haque, H. A. Naseem, and W. D. Brown, 'Aluminum-Induced Crystallization and Counter-Doping of Phosphorus-Doped Hydrogenated Amorphous Silicon at Low Temperature,' Journal of Applied Physics, vol. 79, pp. 7529-7536, 1996. [25] L.Hultma, A. Robertsson, and H.T.G.Hentzell, 'Crystallization of Amorphous Silicon During Thin-Film Gold Reaction,' Journal of Applied Physics, vol. 62, pp. 3647-3655, 1987. [26] S. P. Nikanorov, M. P. Volkov, V. N. Gurin, Y. A. Burenkov, L. I. Derkachenko, B. K. Kardashev, L. L. Regel, and W. R. Wilcox, 'Structural and Mechanical Properties of Al–Si alloys Obtained by Fast Cooling of a Levitated Melt,' Materials Science and Engineering, vol.390, pp. 63-69, 2005. [27] P. I. Widenborg and A. G. Aberle, 'Surface Morphology of Poly-Si Films Made by Aluminium-Induced Crystallisation on Glass Substrates,' Journal of Crystal Growth, vol. 242, pp. 270-282, 2002. [28] S. Y. Yoon, K.H.Kim, C. O. Kim, J. Y. Oh, and J. Jang, 'Low Temperature Metal Induced Crystallization of Amorphous Silicon Using a Ni Solution,' Journal of Applied Physics, vol. 82, pp. 5865-5867,1997. [29] S. W. Lee, Y. C. Jeon, and S. K. Joo, 'Pd induced Lateral Crystallization of Amorphous Si Thin Film,' Applied Physics Letters, vol. 66, pp.1671-1673, 1995. [30] E. A. Guliants and W. A. Anderson, 'Study of Dynamics and Mechanism of Metal-Induced Silicon Growth,' Journal of Applied Physics, vol. 89, p. 4648, 2001. [31] S. Y. Yoon, S. K. Kim, J. Y. Oh, Y. J. Choi, W. S. Shon, C. O. Kim, and J. Jang, 'A High-Performance Polycrystalline Silicon Thin-Film Transistor Using Metal-Induced Crystallization with Ni Solution,' Journal of Applied Physics, vol. 37, pp. 7193-7197, 1998. [32] A. Hiraki, 'Low Temperature Reactions at Si/Metal Interfaces; What is going on at the Interfaces?,' Surface Science, vol. 3, pp. 357-412, 1983. [33] O. Tuzun, Y. Qiu, A. Slaoui, I. Gordon, C. Maurice, S. Venkatachalam, S. Chatterjee, G. Beaucarne, and J. Poortmans, 'Properties of N-Type Polycrystalline Silicon Solar Cells Formed by Aluminium Induced Crystallization and CVD Thickening,' Solar Energy Materials & Solar Cells, vol. 94, pp. 1869-1874, 2010. [34] J. H. Kim and J. Y. Lee, 'Al-Induced Crystallization of an Amorphous Si Thin Film in a Polycrystalline Al/Native SiO2/Amorphous Si Structure,' Japanese Journal of Applied Physics, vol. 35, pp. 2052-2056, 1996. [35] C. C. Peng, C. K. Chung, and J. F. Lin, 'Effects of Al Film Thickness and Annealing Temperature on the Aluminum-Induced Crystallization of Amorphous Silicon and Carrier Mobility,' Acta Materialia, vol. 59, pp.6093-6102, 2011. [36] J. H. Wang, S. Y. Lien, C. F. Chen, and W. T. Wang, 'Large-Grain Polycrystalline Silicon Solar Cell on Epitaxial Thickening of AIC Seed Layer by Hot Wire CVD,' IEEE Electron Device Letters, vol. 31, pp. 38-40, 2010. [37] D.V.Gestel, I. Gordon, A. Verbist, L. Carnel, G. Beaucarne, and J.Poortmans, 'A New Way to Selectively Remove Si Islands from Polycrystalline Silicon Seed Layers Made by Aluminum-Induced Crystallization,' Thin Solid Films, vol. 516, pp. 6907-6911, 2008. [38] I. Gordon, L. Carnel, D. V. Gestel, G. Beaucarne, and J. Poortmans, '8% Efficient Thin-Film Polycrystalline-Silicon Solar Cells Based on Aluminum-Induced Crystallization and Thermal CVD,' Progress in Photovoltaics:Research and Applications, vol. 15, pp. 575-586, 2007. [39] C. A. Gueymard, 'Parameterized Transmittance Model for Direct Beam Energy, vol. 71, pp.325-346, 2001. [40] B. Kippelen, 'Evaluating the Power Conversion Values of Organic Solar Cells,' SPIE, 2009. [41] S. Schicho, F. Kohler, R. Carius, and A. Gordijn, 'The Relationship of Structural Properties of Microcrystalline Silicon to Solar Cell Performance,' Solar Energy Material & Solar Cells vol. 98, pp. 391-397,2012. [42] P. R. Cabarrocas, 'Plasma Enhanced Chemical Vapor Deposition of Amorphous, Polymorphous and Microcrystalline Silicon Films,' Journal of Non-Crystalline Solids, vol. 266-269, pp. 31-37, 2000. [43] A. KO£ODZIEJ, P. KREWNIAK, and S. NOWAK, 'Improvement in Silicon Thin Film Solar Cell Efficeiency,' OPTO-ELECTRONICS REVIEW, vol. 11, pp. 281-289, 2003. [44] D. VanGestel, I. Gordon, and J. Poortmans, 'Aluminum-Induced Crystallization for Thin-Film Polycrystalline Silicon Solar Cells: Achievements and Perspective,' Solar Energy Materials & Solar Cells,vol. 119, pp. 261-270, 2013. [45] C. Jaeger, M. Bator, S. Matich, and M. Stutzmann, 'Two-Step Crystallization During the Reverse Aluminum-Induced Layer Exchange Process,' Journal of Applied Physics, vol. 108, p. 113513, 2010.
摘要: 本文研究主要目的是利用鋁誘發結晶之方式,將非晶矽薄膜結晶成多晶矽薄膜,並將之應用於太陽能電池元件。本論文分成三個主題,第一個部分為以鋁誘發金屬結晶的方式,將非晶矽薄膜退火誘發結晶成為多晶矽薄膜,並蝕刻薄膜表面之金屬薄膜,藉由 Raman、XRD 與霍爾量測等方式 分析、探討退火溫度與氧化層對多晶矽薄膜結晶特性之影響,並討論過程 中之擴散速度與成核速度的影響,並找出鋁誘發結晶過程中最理想的製作 條件。主題二為探討多晶薄膜之磊晶能力,將製作好的多晶矽薄膜當作晶 種層,在上方磊晶上 P 型與本質的矽薄膜,並使用拉曼分析其磊晶薄膜與非晶矽薄膜之結晶比例的差異,並研究矽薄膜之氫稀釋比與厚度對於磊晶過程中的影響,最後一部分以磊晶之結果製作兩種結構之太陽能電池,並以 I-V 量測探討此兩種結構間之效果差異,以及該多晶矽薄膜應用於太陽能電池元件的潛力與可行性。
In this work, we investigate the influence of seed layer which is made by means of aluminum induced crystallization on effect of crystalline fraction, and the solar cell’s efficiency. The Si in the PIN solar cell on seed layer was expected to have higher crystalline fraction that will alleviate Stabler-Wronski effect in a thin film Si solar cell. The seed layer was made by aluminum induced crystallization. In the process of aluminum induced crystallization, an etching solution was used for removing aluminum from the surface of poly-crystalline silicon which annealed in furnace. Investigate to the influence of annealing temperature and oxidation duration on seed layer.In this part, using Hall measurements to determine the suitable conditions to make seed layer.The conditions were annealing temperature 450 ℃and oxidation duration 2 hours. Following, we deposite p-type and intrinsic silicon on the seed layer by PECVD. And intrinsic silicon obtained 25.69 % of the crystallization fraction enhancement.Design two structures of solar cell device to investigate the difference and discuss the potential and feasibility of the application to solar cell by I-V. The efficiency of Structure A solar cell on seed layer was 0.511 % and largest short circuit density was 5.856 mAcm-2.
URI: http://hdl.handle.net/11455/91869
文章公開時間: 2018-07-16
Appears in Collections:光電工程研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.