Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91902
標題: CaO-Al2O3-SiO2-MgO-CaF2脫硫劑之物化性研究
The study of physical and chemical properties of CaO-Al2O3-SiO2-MgO-CaF2 slags
作者: 林坤賢
Kun-Hsien Lin
關鍵字: 
no
引用: [1] D. Jaffre, Effect of the Elements on Steel Properties: A Summary, Chaparral Steel, Texas, pp.1-18, 2003. [2] Z. H. Tian, B. H. Li, X. M. Zhang, and Z. H. Jiang,“Double Slag Operation Dephosphorization in BOF for Producing Low Phosphorus Steel,”Journal of Iron and Steel Research, Vol. 16, No. 3, pp. 6-14, 2009. [3] 劉根來主編,煉鋼原理與工藝,冶金工業出版社,第 78-79 頁,2006 年。 [4] 韓方君、曹貴有、苑士學、楊殿榮,“LF精煉爐渣性能分析”,爐外處理技 術,第2期,第44-45頁,2007。 [5] 徐慈鴻、李貽華,“氟汙染與植物”,行政院農業委員會農業藥物毒物試驗所技 術專刊第 142 號,第 1-11 頁,1993。 [6] H. Wang, D. Ni, H. Zhao, G. Li, and B. Li,“Effect of Fluxing Agent B2O3 on Melting Temperature of CaO-Based Refining Slag,”Special Steel, Vol. 30, No. 6, pp. 1-3, 2009. [7] 林巖騫、蘇遠志、蔡立文、馮榮仲, ”含氟廢酸液轉製成螢石於煉鋼廠的資源 利用”,中國礦冶工程學會 102 年年會 [8] 宋文林主編,電弧爐煉鋼,冶金工業出版社,第 1-8 頁,1995 年。 [9] www.steeluniversity.org, EAF introduction. [10] 蕭連華、戴棟、崔寶民、劉翠花,“唐鋼電弧爐泡沫渣埋弧冶煉的實踐與探討”,河北冶金,第二期,2001 [11] R. C. Sharma and Y. A. Chang, “Thermodynamics and Phase Relationships of Transition Metal-Sulfur Systems: Part Ⅲ.Thermodynamic Properties of the Fe-S Liquid Phase and the Calculation of the Fe-S Phase Diagram,” Metallurgical Transactions B, Vol. 10, No. 1, pp. 103-108, 1979. [12] www.factsage.com, Fe-S-Gas Phase Diagram. [13] 劉根來主編,煉鋼原理與工藝,冶金工業出版社,第 95-96 頁,2006。 [14] 宋文林,電弧爐煉鋼,冶金工業出版社,第 95 頁,1995。 [15] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣, 化學工業出版社,第 63 頁,2009。 [16] K. Wu and Z. Liang,“Industrial Experiment of Desulfurization in LF Refining Process at Baotou Iron and Steel Co., Ltd,”Iron and Steel, Vol. 36, No. 8, pp.16-18, 15, 2001. [17] R. J. Fruehan, Ladle Metallurgy, Principles and Practices, A Publication of the Iron and Steel Society, Warrendale, Pennsylvania, pp. 1-2, 1985. [18] Z. B. Li, S. I. Zhao, X. G. Zhao, T. H. He, “Cementitious property modification of basic oxygen furnace steel slag,” Construction and building materials, Vol. 48, pp. 575-579, 2013. [19] H. S. Kim, D. J. Min, and J. H. Park, “Foaming behavior of CaO-SiO2-FeO-MgOsatd-X(X=Al2O3, MnO, P2O5, and CaF2) slags at high temperatures,” ISIJ, Vol. 41, No. 4, pp. 317-324, 2001. [20] M.H Song, Q.F Shu, D.S Chen, “Viscosities of the quatemary Al2O3-CaO-MgO-SiO2 slags,” Steel research Int, Vol. 82, No. 3, 2011. [21] T. Gladman,“Developments in Inclusions and Their Effect on Steel Properties,”Ironmaking and Steelmaking, Vol. 19, No. 6, pp. 457-463, 1992. [22] D. Zhan, Z. Jian, W. Wang, L. Liang, Z. Guo, and C. Li,“Experimental Study of CaO-Al2O3-CaF2-MgO-SiO2 Pre-Melted Slag For Molten Steel Deep Desulphurization,”Steelmaking, Vol. 18, No. 6, pp. 33-36, 2002. [23] L. C. Oertel and A. C. eSilva, “Application of Thermodynamic Modeling to Slag-Metal Equilibrian in Steelmaking,”Calphad, Vol. 23, No. 3-4, pp. 379-391, 1999. [24] M. M. Nzotta, D. Sichen, and S. Seetharaman,“A Study of the Sulfide Capacities of Iron-Oxide Containing Slags,”Metallurgical and Materials Transations B, Vol. 30, No. 5, pp. 909-920, 1999. [25] H. M. Wang, L. L. Yang, G. R. Li, X. Zhu, H. Zhu, and Y. T. Zhao, “Effect of B2O3 and CaF2 on melting temperatures of CaO-SiO2-Fe2O3 system fluxes,” Journal of iron and steel research, International, Vol. 20, No. 6, pp. 21-24, 2013. [26] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣, 化學工業出版社,第 63-66 頁,2009 年。 [27] 郝寧、王海濤、王新華、李宏、王萬軍,“硫容量與硫分配比的計算與分析”, 北京科技大學學報,第 28 卷,第 1 期,第 25-28 頁,2006 年。 [28] E. T. Turkdogan,“Physicochemical Aspects of Reactions in Ironmaking and Steelmaking Processes,”Transactions ISIJ, Vol. 24, No. 8, pp. 591-611, 1984. [29] A. T. Andersson, P. G. Jönsson, and M. M. Nzotta, “Application of the Sulfuride Capacity Concept on High Basicity Ladle Slags Used in Bearing-Steel Production,” ISIJ International, Vol. 39, No. 11, 1999. [30] H. Mitsutaka, K. Susumu, and B. Y. Shiro,“Sulphide Capacities of CaO-Al2O3-MgO and CaO-Al2O3-SiO2 Slags,”ISIJ International, Vol. 33, No. 1, pp. 36-42, 1993. [31] Y. Taniguchi, N. Sano, and S. Seetharaman,“Sulphide Capacities of CaO-Al2O3-SiO2-MgO-MnO Slag in the Temperature Range 1673-1773K,”ISIJ International, Vol. 49, No. 2, pp. 156-163, 2009. [32] M. M. Nzotta, D. Sichen, and S. Seetharaman,“A Study of the Sulfide Capacities of Iron-Oxide Containing Slags,”Metallurgical and Materials Transations B, Vol. 30, No. 5, pp. 909-920, 1999. [33] A. D. Pelton, G. Eriksson, and A. Romero-Serrano,“Calculation of Sulfide Capacities of Multicomponent Slags,”Metallurgical and Materials Transations B, Vol. 24, No. 5, pp. 817-825, 1993. [34] C. B. Shi, X. M. Yang, J. S. Jiao, C. Li, and H. J. Guo,“A Aulphide Capacity Prediction Model of CaO-SiO2-MgO-Al2O3 Ironmaking Slags Based on the Iron and Molecule Coexistence Theory,”ISIJ International, Vol. 50, No. 10, pp. 1362-1372, 2010. [35] 郝寧、王海濤、王新華、李宏、王萬軍,“硫容量與硫分配比的計算與分析”, 北京科技大學學報,第 28 卷,第 1 期,第 25-28 頁,2006 年。 [36] S. L. Chen, Y. C. Lu, and Q. S. Ma,“Application of Sulfur Distribution Ratio in Optimization of LF Ladle Slag Composition,”Steelmaking, Vol. 25, No. 3, pp. 37-41, 2009. [37] X. M. Yang, J. S. Jiao, R. C. Ding, C. B. Shi, and H. J. Guo,“Ratio between CaO-SiO2-MgO-Al2O3 Ironmaking Slags and Carbon Saturated Hot Metal Based on the Iron and Molecule Coexistence Theory,”ISIJ International, Vol. 49, No. 12, pp. 1828-1837, 2009. [38] 李晶,LF 精煉技術,北京冶金工業出版社,第 56-57 頁,2009 年 [39] 川合,鋼鐵,Vol. 58, pp. 932, 1972 [40] 鄭麗君、張國棟、劉海嘯,“合成精煉渣對鋼液脫硫作用的研究”,冶金能源, 第 28 卷,第 3 期,第 8-11 頁,2009 [41] A. Kondratiev, P. C. Hayes and E. Jak, “Development of Quasi-chemical viscosity model for fully liquid slags in Al2O3-CaO-FeO-MgO-SiO2 system. Part 3. Summary of the model predictions for the Al2O3-CaO -MgO-SiO2 system and its sub-systems,” ISIJ International, Vol 46, No. 3, pp. 375-384, 2006 [42] M. H. Song, Q. F. Shu and D. S. Chen, “Viscosities of Quaternary Al2O3-CaO -MgO-SiO2 slags,” Steel research Int, Vol. 82, No. 3, pp. 260-268, 2011 [43] 林佑俞,“ 轉爐煉鋼爐渣黏度與成份及固態相關係之研究”,台灣大學材料科 學與工程學研究所碩士論文,民國 98 年 [44] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣, 化學工業出版社,第 56 頁,2009 年 [45] E. Pretorius, Slag Short Course, LWB Refractories, Process Tech. Group, pp.105-121. [46] J. Yang, M. Kuwabara, T. Sakai, N. Uchida, Z. Liu, and M. Sano,“Simultaneous Desulfurization and Deoxidation of Molten Steel with in Situ Produced Magnesium Vapor,”ISIJ International, Vol. 47, No. 3, pp. 418-426, 2007. [47] 李廣田、陳敏、杜成武編著,鋼鐵冶金輔助材料-精煉渣、覆蓋劑、保護渣, 化學工業出版社,第 48-51 頁,2009。 [48] 馮捷、張紅文主編,煉鋼基礎知識,冶金工業出版社,第 167 頁,2007。 [49] Y. Min, D. Y. Wang, C. J. Liu, and M. F. Jiang,“Study on Forming Performance of LF Refining Slag with High Basicity,”Journal of Northeastern University(Natural Science), Vol. 29, No. 3, pp. 350-353, 2008. [50] K. C. Mills, “The Influence of structure on the Physico-chemical properties of slags,” ISIJ International, Vol. 33, No. 1, pp. 148-155, 1993. [51] 張鑑,爐外精練的理論與實踐,北京冶金工業出版社,第 150-159 頁,1993. [52] R. W. Young, J. A. Duffy, and G. J. Hassall, “Use of optical basicity concept for determining phosphorous and sulfur slag-metal partitions,” Ironmaking and steelmaking, Vol. 119, No. 3, pp. 201-219, 1992. [53] 吳政翰,“B2O3、CaF2 加入 CaO-Al2O3-SiO2 脫硫劑對脫硫能力及耐火材侵蝕之 研究”,國立中興大學材料科學與工程學研究所碩士論文,2011。 [54] J. L. Liao, Y. G. Zhang, Seetharaman Sridhar, X. D. Wang and Z. T. Zhang, “Effect of Al2O3/SiO2 Ratio on the Viscosity and Structure of Slags,” ISIJ International, Vol. 52, No. 5, pp. 753–758, 2012. [55] T. M. David, F. C. Lucia, M. R. Sagrario, “Hydration of calcium aluminates and calcium sulfoaluminate studied by Raman spectroscopy,” Cement and Concrete Research, Vol. 47, pp. 43-50, 2013. [56] J. Waligora, D. Bulteel, P. Degrugilliers, D. Damidot, J. L. Potdevin, and M. Measson, “Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach,” Materials characterization, Vol. 61, pp. 39-48, 2010. [57] 周宏、吳曉春、崔崑,“硫在 CaO-Al2O3 系熔渣與鋼夜間的分配律”,鋼鐵,第 30 卷,第 6 期,2004。
摘要: The desulfurization reactions in steel making are associated with basicity, melting point, viscosity. In this study, design six groups (A-F) with a low melting point,different basicity, and different composition phase. In order to make a comparison, three control groups which are similar to steelworks slag waste (A1-A3) were designed. The three control groups are content 10% CaF2. By identify the physical and chemical properties of these groups, to discuss the impact of the desulfurization reaction. In this experiment, using the frequency induction furnace to pre-melting the nine groups, simulating the patterns after the high-temperature reaction of nine groups. After pre-melting, conducted a series of experiments as viscosity, F-CaO, XRD, XRF, DTA,Raman. Simulate the sulfur distribution ratio and desulfurization rate by using Thermo-Calc software. In the results and discussions, it is confirm the pre-melting is success by XRD and XRF. In F-CaO testing, the group of Al-killed steel has higher F-CaO. The content of F-CaO increase when the percent of Al2O3 increase. The melting point of the six groups are about 1470-1510°C, the three control groups are about 1400°C. The viscosity of Si-killed steel is higher, because of higher SiO2 content. But, when the CaF2 is add, it will break the cross-linked network of SiO2 and Al2O3 and reduce the viscosity. As the SiO2 decrease, the group of Al-killed steel has lower viscosity. After the thermodynamic simulation, The group E has the best desulfurization rate and Ls of six testing groups. The group E has the best efficiency (desulfurization rate: 56%), because it has high value of Cs, enough F-CaO, low viscosity. The efficiency is closest to control group. High optical basicity has good properties, such as low viscosity,high F-CaO, Ls and desulfurization rate. It is helpful for desulfurization.
本研究利用週波爐加熱脫硫劑配方模擬經過高溫熔融後脫硫劑的狀態,並進一步利用熱力學模擬軟體進行脫硫反應的模擬 不同成份的脫硫劑有不同的鹼度、熔點、黏度、F-CaO,本研究設計出六組(A-F)具有低熔點、不同鹼度、不同組成相的六組配方進行試驗,並設計三組(A1-A3)與鋼廠爐渣成分相近的對照組,探討物化性對於脫硫反應的影響。 本實驗利用週波爐進行配方預熔的動作,模擬配方在高溫反應後的型態,利用 XRF 及 XRD 鑑定配方預熔的成分及組成相是否準確,並運用濕式分析各組配方的 F-CaO,DTA 量測脫硫劑的熔點,利用 DVⅢRV type 的高溫黏度計進行黏度量測以及使用 Raman 光譜進行黏度的佐證,一連串的物化性分析後,進一步利用Therma-Calc 熱力學模擬軟體進行模擬,藉由參數的設定可以得知在熔煉溫度為1600°C 時熔渣與鋼液的成分比例,進一步得知配方的脫硫率及 Ls 值。 實驗結果發現在九組配方中,由 XRD 及 XRF 鑑定確認配方預熔成功,後續進行物化性的分析,發現 F-CaO 的含量為鋁脫氧鋼的配方含量最多,進一步了解到 F-CaO 的量隨著氧化鋁增加而增加 而在熔點 A-F 六組配方大約落在 1470-1510°C,添加氟化鈣的對照組熔點約在 1400°C。在矽脫氧鋼的組別因氧化矽的含量高導致有高的黏度值,但在加入氟化鈣後,因斷除氧化矽的交聯結構,使黏度值下降,而在鋁脫氧鋼的組別,因氧化矽的含量減少而有較低的黏度,由模擬得知在適當的黏度值、熔點,F-CaO 下,E 組的脫硫率及 Ls 值最好,最接近添加氟化鈣 的對照組,為最有潛力加以修改運用在煉鋼製程中,並且藉由對照組的比對,得到一個評估脫硫劑好壞的公式 當脫硫劑擁有高的 Cs 值 並且滿足有適當的 F-CaO,餐與反應、熔點低於 1600°C、低黏度值低於,便能判定此配方為好的脫硫劑,藉由此方式可以初步評估設計的脫硫劑的可行性。由光學鹽基度能得知,高的光學鹽基度能有低黏度、高 F-CaO、高脫硫率及 Ls 等對脫硫有幫助的特性。
URI: http://hdl.handle.net/11455/91902
其他識別: U0005-2406201514123400
文章公開時間: 2018-07-16
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.