Please use this identifier to cite or link to this item:
標題: 碳化鉬中間層於鐵鉑磁記錄媒體之應用
MoC intermediate layer for FePt magnetic recording media
作者: 羅琦邵
Qi-Shao Luo
關鍵字: 碳化鉬
intermediate layer
magnetic recording media
引用: [1] 服部正勝, 鈴木博, and 菅谷誠一, 'HDD, ODD, 及び SSD の技術動向,' 東芝レビュー, vol. 66, pp. 30-35, 2011. [2] R. Wood, 'Future hard disk drive systems,' Journal of magnetism and magnetic materials, vol. 321, pp. 555-561, 2009. [3] M. N. Baibich, J. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, 'Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices,' Physical Review Letters, vol. 61, p. 2472, 1988. [4] D. Weller, O. Mosendz, G. Parker, S. Pisana, and T. S. Santos, 'L10 FePtX–Y media for heat‐assisted magnetic recording,' physica status solidi (a), vol. 210, pp. 1245-1260, 2013. [5] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, and N. Yoshikawa, 'Future options for HDD storage,' Magnetics, IEEE Transactions on, vol. 45, p. 3816-3822, 2009. [6] R. Evans, R. Chantrell, U. Nowak, A. Lyberatos, and H.-J. Richter, 'Thermally induced error: density limit for magnetic data storage,' Applied Physics Letters, vol. 100, p. 102402, 2012. [7] B. Zhang and W. Soffa, 'Structure and properties of rapidly-solidified iron-platinum and iron-palladium alloys,' Magnetics, IEEE Transactions on, vol. 26, pp. 1388-1390, 1990. [8] Y. Xu, J. Chen, and J. Wang, 'In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr 100-x Ru x underlayer at low substrate temperature,' Applied physics letters, vol. 80, pp. 3325-3327, 2002. [9] J. Chen, B. Lim, and J. Wang, 'Controlling the crystallographic orientation and the axis of magnetic anisotropy in L10 FePt films,' Applied physics letters, vol. 81, pp. 1848-1850, 2002. [10] J. Chen, Y. Xu, and J. Wang, 'Effect of Pt buffer layer on structural and magnetic properties of FePt thin films,' Journal of applied physics, vol. 93, pp. 1661-1665, 2003. [11] J. Chen, B. Lim, and T. Zhou, 'Effect of ultrahigh vacuum on ordering temperature, crystallographic and magnetic properties of L10 FePt (001) film on a CrRu underlayer,' Journal of Vacuum Science & Technology A, vol. 23, pp. 184-189, 2004. [12] J. Chen, B. Lim, Y. Ding, and G. Chow, 'Low-temperature deposition of L1< sub> 0</sub> FePt films for ultra-high density magnetic recording,' Journal of magnetism and magnetic materials, vol. 303, pp. 309-317, 2006. [13] J. S. Chen, B. Lim, J. Hu, Y. Lim, B. Liu, and G. Chow, 'High coercivity L1 0 FePt 82 films with perpendicular anisotropy deposited on glass substrate at reduced temperature,' Applied physics letters, vol. 90, pp. 042508-042508-3, 2007. [14] B. Lim, J. Chen, J. Hu, Y. Lim, B. Liu, G. Chow, and G. Ju, 'Improvement of chemical ordering of FePt (001) oriented films by MgO buffer layer,' Journal of Applied Physics, vol. 103, pp. 07E143-07E143-3, 2008. [15] J. S. Chen, J. F. Hu, B. C. Lim, W. L. Phyoe, B. Liu, and G. Ju, 'Structure and magnetic properties of L10 FePt film with Ag heat sink layer,' Journal of Applied Physics, vol. 105, pp. -, 2009. [16] K. Cher, T. Zhou, W. Lim, J. Hu, and P. Lwin, 'TiN and TiC Intermediate Layers for FePt-C-Based Magnetic Recording Media,' Magnetics, IEEE Transactions on, vol. 49, pp. 2586-2589, 2013. [17] Y. Liu, Y. Jiang, J. Feng, and R. Zhou, 'Elasticity, electronic properties and hardness of MoC investigated by first principles calculations,' Physica B: Condensed Matter, vol. 419, pp. 45-50, 2013. [18] M. Hansen, Constitution of binary alloys: New York : McGraw-Hill, 1958. [19] U. Kawald, W. Zemke, H. Bach, J. Pelzl, and G. Saunders, 'Elastic constants and martensitic phase transitions in FePt and FeNiPt invar alloys,' Physica B: Condensed Matter, vol. 161, pp. 72-74, 1989. [20] B. E. Warren, X-ray diffraction: Reading, Mass. : Addison-Wesley, 1969. [21] Y. Feng, D. Laughlin, and D. Lambeth, 'Formation of crystallographic texture in rf sputter‐deposited Cr thin films,' Journal of applied physics, vol. 76, pp. 7311-7316, 1994. [22] T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, Binary alloy phase diagrams. Metals Park, Ohio: American Society for Metals, 1986. [23] H. W. Hugosson, O. Eriksson, U. Jansson, A. V. Ruban, P. Souvatzis, and I. Abrikosov, 'Surface energies and work functions of the transition metal carbides,' Surface science, vol. 557, pp. 243-254, 2004. [24] M. Ohring, The materials science of thin films: Boston : Academic Press, 1992. [25] 金重勳, 李景明, and 張慶瑞, 磁性技術手冊. 中華明國磁性技術協會, 台灣: 中華明國磁性技術協會, 2002. [26] 近角聰信, 磁性物理學: 台北巿 : 聯經, 1982. [27] B. D. Cullity, Introduction to magnetic materials: Hoboken, N.J. : IEEE/Wiley, 2009. [28] G. D. E. American Institute of Physics, American Institute of Physics handbook. New York: McGraw-Hill, 1984. [29] J. C. Maxwell, A treatise on electricity and magnetism vol. 2: Clarendon press, PP. 1006, 1954. [30] 蕭世男, '初始應力/應變態對鐵鉑薄膜其序化轉變與動力學之影響,' 材料 83 科學與工程學系, 逢甲大學, 博士論文, 2011. [31] Y.-C. Wu, L.-W. Wang, C.-H. Lai, and C.-R. Chang, 'Control of microstructure in (001)-orientated FePt–SiO 2 granular films,' Journal of Applied Physics, vol. 103, pp. 07E140-07E140-3, 2008. [32] C.-H. Lai, C.-H. Yang, C. Chiang, T. Balaji, and T. Tseng, 'Dynamic stress-induced low-temperature ordering of FePt,' Applied physics letters, vol. 85, pp. 4430-4432, 2004. [33] E. Yang, D. E. Laughlin, and J.-G. Zhu, 'Correction of order parameter calculations for FePt perpendicular thin films,' Magnetics, IEEE Transactions on, vol. 48, pp. 7-12, 2012. [34] K. Takanashi, M. Watanabe, and H. Fujimori, 'Correlation between magnetooptical Kerr rotation and anomalous Hall effect in FePt/Pt multilayer films,' Journal of Magnetism and Magnetic Materials, vol. 104, pp. 1749-1750, 1992. [35] M. Visokay, B. Lairson, B. Clemens, and R. Sinclair, 'Microstructural analysis of magnetic Fe/Pt multilayer thin films by transmission electron microscopy,' Journal of magnetism and magnetic materials, vol. 126, pp. 136-140, 1993. [36] S. Mitani, K. Takanashi, M. Sano, H. Fujimori, A. Osawa, and H. Nakajima, 'Perpendicular magnetic anisotropy and magneto-optical Kerr rotation in FePt (001) monoatomic multilayers,' Journal of magnetism and magnetic materials, vol. 148, pp. 163-164, 1995. [37] T. Shima, K. Takanashi, Y. Takahashi, and K. Hono, 'Preparation and magnetic properties of highly coercive FePt films,' Applied physics letters, vol. 81, pp. 1050-1052, 2002. [38] T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, 'Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition,' Applied physics letters, vol. 80, pp. 288-290, 2002. [39] 國立中興大學奈米中心網站. 高解析度穿透式電子顯微鏡 圖片. Available: [40] D. B. Williams, Transmission electron microscopy: New York, NY : Plenum Press, 1996. [41] 林智仁 and 羅聖全, '場發射穿透式電子顯微鏡簡介,' 工業材料雜誌, vol. 201, pp. 90-98, 2003.
摘要: A (001) textured FePt film was deposited on MoC/CrRu/glass at heated-substrate by using magnetron sputtering in 4-guns sputter system with DC power supply. We studied the effect of MoC conductive intermediate layer on CrRuFePt system. My work would step by step with three parts. In the first part, the FePt films were deposited on different MoC thickness at 380℃. And the MoC intermediate layer was used to resist the Cr diffusion up to high deposition temperatures and promotes the epitaxial growth of the (001) texture FePt films. The FePt showed high perpendicular magnetization and the out-of-plane coercivity increased with MoC thickness. The FePt/MoC (5 nm)/CrRu film showed a square out-of-plane magnetic hysteresis loop with a coercivity of 6.0 kOe and a linear-like in-plane loop. We also learned that the FePt particles would concentrate in the rectangular structure by specific orientation at certain temperature. The second part was fixed the FePt (10 nm)/MoC (5 nm)/CrRu film thickness and changed the deposited temperature of FePt films from 260℃ to 410℃. We can obviously observe that the FePt started to order at 320℃ and the ordering degree reach to 0.79 when the FePt deposited at 410℃, also the square magnetization curve showed and the greater out-of-plane Hc value of 6.9 kOe was obtained. In addition, the rectangular structure which shows at 380℃ was surmised to be a transition-shape. Once the deposition temperature slightly increased, the rectangular area would be dispersing into particular-like. In the final part, the substrate temperature of FePt (t)/MoC (5 nm)/CrRu film was fixed and the FePt thickness t changed from 4~10 nm. At such high deposited temperature of 410℃ could obtain a great magnetic property on all of samples on this part. The highest coercivity value was 8.3 kOe when FePt thickness was 5 nm. We found that the magnetic property of FePt/MoC/CrRu films might be more related to ordering degree rather than microstructur. A multi-fuctional MoC intermediate layer exhibited heteroepitaxial relation with FePt and CrRu and was capable of resisting the underlayer diffusion at high deposition temperature.
本實驗使用配備四支磁控濺鍍槍之高真空濺鍍系統,皆以直流電源供應器供給各靶材所需之濺鍍功率,在基座加熱至高溫狀態下於玻璃基板上依序沉積CrRu底層、MoC中間層,最後堆疊FePt磁記錄層,研究導體之MoC中間層材料於CrRuFePt的磊晶膜層系統中其對FePt序化之影響。 實驗循序漸進分為三個部分:首先在380℃高溫下,於CrRu (80 nm)/glass底層上沉積MoC 0~5 nm,再沉積FePt 10 nm。實驗結果觀察發現隨MoC厚度增加,FePt (001)織構強度被有效提升,且垂直膜面之矯頑磁力亦隨之升高。於FePt/MoC (5 nm)/CrRu膜層樣品觀察,其呈現方正之垂直膜面磁滯曲線,矯頑磁力高達6.0 kOe,而水平膜面之磁滯迴路接近線性,顯示出極佳之垂直磁異向性。證明5 nm MoC可有效在高沉積溫度下阻擋底層擴散並促使FePt序化。另外可於微結構觀察到在此溫度下FePt顆粒會依特定方向性聚集排列成長方狀的島狀結構。 第二部分實驗為固定膜層厚度FePt (10 nm)/MoC (5 nm)/CrRu並改變FePt沉積溫度 ,觀察發現FePt於320℃便開始序化,沉積溫度提高至410℃時FePt序化度提高至0.79,並得到垂直矯頑磁力6.9 kOe。微結構方面發現第一部分FePt之長方狀結構僅出現在380℃,推斷為一過渡形貌,稍加溫度即會使此狀態崩散成一般顆粒膜,另外可觀察到隨沉積溫度提高,FePt膜層由原本連續性薄膜轉變成島狀之顆粒膜型態。 最後一部分為改變FePt薄膜之厚度,在沉積溫度410℃下樣品皆能得到不錯的磁性質,整體來看,膜層厚度降低序化度以及垂直矯頑磁力有升高的趨勢,於FePt 5 nm時垂直膜面之Hc達8.3 kOe,再進一步降低膜層厚度至4 nm時會因應力釋放使得FePt沿c軸垂直排列崩解而破壞整體膜層的序化度以及磁性質。而第二及第三部分實驗發現此膜層系統之磁性質與微結構較無關聯,磁性質好壞依序化程度而變動。
其他識別: U0005-2706201412055300
文章公開時間: 2017-07-03
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.