Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91911
標題: 磁場後退火對氧化鎳/鈷鐵雙層薄膜之微結構及磁性質研究
The influence of post deposition magnetic field annealing on the microstructures and magnetic properties of NiO/Co90Fe10 bilayers
作者: 蘇珊
Shan Su
關鍵字: 磁場退火
鐵磁層厚度
磁場後退火溫度
矯頑磁力
magnetic field annealing processes
thickness
temperatures
coercivity
引用: [1] W. H. Miklejohn, C. P. Bean, Phys. Rev. 102, 1413 (1956). [2] R. L. Stamps, J. Phys. D: Appl. Phys. 33, R247 (2000). [3] A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987). [4] D. L. Cortie, K.-W. Lin, C. Shueh, H.-F. Hsu, X. L. Wang, M. James, H. Fritzsche, S. Bruck, and F. Klose, Phys. Rev. B 86, 054408 (2012). [5] D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047(1987). [6] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422, 65 (2005). [7] K.-W. Lin, C. Shueh, C.-H. Liu, E. Skoropata, T.-H. Wu, and J. van Lierop, J. Appl. Phys. 113, 17C104 (2013). [8] G. Li, C. W. Leung, C. Shueh, H.-F. Hsu, H.-R. Huang, K.-W. Lin, P. T. Lai, and P. W. T. Pong, Surface & Coatings Technol. 228, S437 (2013). [9] A. Brambilla, P. Sessi, M. Cantoni, M. Finazzi, N. Rougemaille, R. Belkhou, P. Vavassori, L. Duò, and F. Ciccacci, Phys. Rev. B 79, 172401 (2009). [10] M. Xu, Z. Lu, T. Yang, C. Liu, S. Cui, Z. Mai, W. Lai, Q. Jia, and W. Zheng, J. Appl. Phys. 92, 2052 (2002). [11] A. V. Svalov, P. A. Savin, V. N. Lepalovskij, A. Larranaga,
V. O. Vas’kovskiy, A. Garcia Arribas, and G. V. Kurlyandskaya, AIP ADVANCES 3, 092104 (2013). [12] J.-Y. Guo, Y.-M. Tzeng, J. van Lierop, S.-Y. Chang, and K.-W. Lin, Jpn. J. Appl. Phys. 48, 073003 (2009). [13] 13. D. L. Cortie, C. Shueh, B.-C. Lai, P.W.T. Pong, J. van Lierop, F. Klose, and K.-W. Lin, IEEE Trans. Magn. 50, 2300904 (2014). [14] F. H. Chen, V. Ng, and A. O. Adeyeye, J. Appl. Phys. 93, 6605 (2003). [15] 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,磁性基本特性及磁性材料應用。 [16] Nicola A.Spaldin,”Magnetic materials”, (2010). [17] David Jiles,”Introduction to magnetism and magnetic materials”,Chapman & Hall. [18] 金重勳, 磁性技術手冊, 中華民國磁性技術協會。 [19] A.E. Berkowitz, Kentaro Takano, Journal of Magnetism and Magnetic Materials 200 (1999) 552-570. [20] D. V. Dimitrov, Shufeng Zhang, J. Q. Xiao, G. C. Hadjipanayis, C. Prados, Phys. Rev. B, S0163-1829(98)06742-3. [21] N. Rougemaille, M. Portalupi, A. Brambilla, P. Biagioni, A. Lanzara, M. Finazzi, A. K. Schmid, and L. Duò, Phys. Rev. B 76, 214425, (2007). [22] V. S. Gornakov, O. A. Tikhomirov, C. G. Lee, J. G. Jung, W. F. Egelhoff, J. Appl. Phys. 105, 103917 (2009) [23] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 [24] Chong Yan, Jun Yu, Wen-Li Zhou, Ji-Fan Xie, Jun-Xiong Gao, Dong-Xiang Zhou, Materials Science and Engineering B 99 (2003) 421-424 [25] E. M. Levin et al,”Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964. [26] J. C. A. Huang, T. E. Wang, C.C. Yu, Y. M. Hu, P. B. Lee, M. S. Yang, J. Cryst. Growth. 171, 442, (1997). [27] E. M. Levin et al,”Phase Diagram for Ceramists”, Amer. Cer. Soc., (1964). [28] W.L. Roth, J. Appl. Phys. 31 2000(1960). [29] K. W. Lin, M. R. Wei, J. Y. Guo, J. Nanotechnol., 9, 2023 (2009). [30] J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, ”Handbook of ion beam processing technology : principles, deposition, film modification, and synthesis”, Noyes Publication, 1989. [31] 汪建民主編,”材料分析”, 中國材料學學會。 [32] C. H. Lai, P. H. Huang, J. Appl. Phys., 95, 7222 (2004). [33] David B. Williams, C.Barry Carter,”Transmission Electron Microscopy”, Plenum Press (1996). [34] Core Tech XPS Website. [35] David Jiles,”Magnetism and Magnetic Materials”,Chapman & Hall, (1991). [36] Instrumentation for Ferromagnetic Resonance Spectrometer, Chapter 2, p.48, Chi-Kuen Lo [37] Mansour A.N. Surf. Sci. Spectra 3, 231 (1994). [38] Mansour A.N. Surf. Sci. Spectra 3, 221 (1994). [39] Tan B.J., Klabunde K.J., Sherwood P.M.A. J. Am. Chem. Soc. 113, 855 (1991). [40] John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, ”Handbook of X-ray Photoelectron Spectroscopy”. [41] Zoltán Kónya, János Kiss, Albert Oszkó, Andrea Siskaa, Imre Kiricsia, Phys. Chem. Chem. Phys., 2001,3, 155-158. [42] V. S. Gornakov, O. A. Tikhomirov, C. G. Lee, J. G. Jung, W. F. Egelhoff, Jr., J. Appl. Phys. 105, 103917 (2009). [43] Feng Weicun, Gao Ruwei, Li Wei, Acta Metallurgica Sinica, Vol.41, No.4, 347-350 [44] Y.-P. Zhao, R. M. Gamache, G.-C. Wang, T.-M. Lu, J. Appl. Phys., Vol. 89, No. 2, 15 January 2001
摘要: We have investigated the magnetism of NiO/CoFe bilayers after a magnetic field annealing processes. A uniaxial anisotropy set by the direction of the magnetic field during the annealing observed via the in-plane angular dependence of hysteresis loops showing easy or hard axis behavior. The NiO crystallographic orientations remained unchanged in the field-annealed NiO/CoFe bilayers indicated that NiO crystallite magnetic spin structures did not affect the CoFe magnetic anisotropy through exchange coupling. The enhanced coercivity in an annealed (TMFA = 350 ºC) NiO/CoFe bilayer was due to the increasing of interfacial roughness and grain size. Another reason could be the magnetic field annealing process has caused thermal diffusion, forming a Co3O4 compound at the interface. It is clearly seen that Hc(tFM) is changed by magnetic field annealing. In contrast to the as-deposited case, where Hc depends only weakly on CoFe thickness, in the annealed films Hc depends strongly on the film thickness as expected for reversal mechanisms that are dominated by interfacial energies. The observed behavior of coercivity enhancement and asymmetry in the hysteresis loops indicated that the exchange coupling strength between CoFe and NiO varied with CoFe thicknesses, interfacial roughness and grain sizes.
本研究以雙離子束濺鍍系統濺鍍 NiO(20min)/CoFe(10, 15, 20min) 雙層薄膜,先利用Kaufman離子源 (800V, 7.5mA) 以入射角45度撞擊Co90Fe10 (at%) 靶材,靶材上的原子濺射出並沉積於SiO2基板上製備出鈷鐵薄膜,再利用Kaufman離子源撞擊Ni靶材,同時End-Hall離子源 (VEH = 70V, 500mA) 通入氧氣 (16% O2/Ar) ,在鈷鐵薄膜上濺鍍一層氧化鎳,製備完一系列試片再將其在高真空下 (~ 10-7 Torr) 於150、200、250、300、350 ºC進行磁場(~500 Oe)退火一小時,藉此來探討在不同場退火溫度下薄膜結構及磁性質效應。 磁場退火方向會影響此雙層薄膜之單軸異向性,使此系列薄膜產生了磁異向性,NiO(20min)/CoFe(10, 15, 20min)雙層薄膜在磁場退火後因微結構改變進而改變了此系列雙層薄膜之磁矩翻轉機制,使薄膜在磁場退火溫度達到350 ºC時,矯頑磁力 (Coercivity, Hc) 有明顯的增加,為晶粒尺寸增加、界面粗糙度增加及Ni擴散進CoFe層形成合金所造成。可知當磁場後退火溫度高於NiO之尼爾溫度 (~252 ºC) 時,NiO之自旋結構被有效的重新排列,反鐵磁層NiO與鐵磁層CoFe會產生強烈的交換耦合效應,沒有交換偏壓 (Hex) 的產生,可能是因為此系列雙層膜之阻隔溫度(Tb)小於室溫298K,而此系列雙層薄膜有著不同的鐵磁層厚度(tCoFe),在磁場退火前tCoFe對Hc影響極小,在磁場退火後Hc正比於tCoFe倒數。由磁滯曲線可看出當磁場後退火達到350 ºC時殘磁增加導致曲線具有高的方正性(Squarness),代表磁矩翻轉機制同被鈷鐵薄膜厚度影響,也被磁場後退火溫度影響。
URI: http://hdl.handle.net/11455/91911
其他識別: U0005-2108201509471000
文章公開時間: 2018-08-25
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.