Please use this identifier to cite or link to this item:
標題: 七層塔萃取物對人類骨癌細胞的抗癌作用製備具萬古黴素鍍層之鈦合金對骨髓炎的治療
Antitumor Effects of Ocimum Gratissimum Extracts on Human Osteosarcoma Cells Preparation of Vancomycin Coated Titanium for Osteomyelitis
作者: 林建中
Chien-Chung Lin
關鍵字: 骨肉瘤
Ti6Al4V 基材
Ocimum gratissimum
vancomycin–chitosan Composite
Ti6Al4V implant
引用: 1. McKenna, R.J., C.P. Schwinn, K. Soong, and N.L. Higinbotham, Sarcomata of The osteogenic series (osteosarcoma, fibrosarcoma, chondrosarcoma, parosteal osteogenic sarcoma, and sarcomata arising in abnormal bone) an analysis of 552 cases. The Journal of Bone & Joint Surgery, 1966. 48(1): p.1-26. 2. Taipei: Department of Health, E.Y., R.O.C. (TAIWAN), Public Health Annual Report. 2011. 3. Mirabello, L., R.J. Troisi, and S.A. Savage, International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer, 2009. 125(1): p. 229-34. 4. Huvos, A.G., Osteogenic sarcoma of bones and soft tissues in older persons. A clinicopathologic analysis of 117 patients older than 60 years. Cancer, 1986. 57(7): p. 1442-9. 5. Tjalma, R.A., Canine bone sarcoma: estimation of relative risk as a function of body size. J Natl Cancer Inst, 1966. 36(6): p. 1137-50. 6. Fraumeni, J.F., Jr., Stature and malignant tumors of bone in childhood and adolescence. Cancer, 1967. 20(6): p. 967-73. 7. Tan, M.L., P.F. Choong, and C.R. Dass, Osteosarcoma: Conventional treatment vs. gene therapy. Cancer Biol Ther, 2009. 8(2): p. 106-17. 8. Greenspan, A., G. Jundt, and W. Remagen, Differential diagnosis in orthopaedic oncology. 2007: Lippincott Williams & Wilkins. 9. German, J., L.P. Crippa, and D. Bloom, Bloom''s syndrome. III. Analysis of the chromosome aberration characteristic of this disorder. Chromosoma, 1974. 48(4): p. 361-6. 10. Fukuchi, K., G.M. Martin, and R.J. Monnat, Jr., Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A, 1989. 86(15): p. 5893-7. 11. Smida, J., D. Baumhoer, M. Rosemann, A. Walch, S. Bielack, C. Poremba, K. Remberger, E. Korsching, W. Scheurlen, C. Dierkes, S. Burdach, G. Jundt, M.J. Atkinson, and M. Nathrath, Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clin Cancer Res, 2010. 16(16): p. 4256-67. 12. Ta, H.T., C.R. Dass, P.F. Choong, and D.E. Dunstan, Osteosarcoma treatment: state of the art. Cancer Metastasis Rev, 2009. 28(1-2): p. 247-63. 13. Picci, P., Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis, 2007. 2: p.6. 14. Longhi, A., E. Barbieri, N. Fabbri, M. Macchiagodena, L. Favale, C. Lippo, N. Salducca, and G. Bacci, Radiation-induced osteosarcoma arising 20 years after the treatment of Ewing''s sarcoma. Tumori, 2003. 89(5): p. 569-72. 15. Paulino, A.C. and B.Z. Fowler, Secondary neoplasms after radiotherapy for a childhood solid tumor. Pediatr Hematol Oncol, 2005. 22(2): p. 89-101. 16. Rani, A.S. and S. Kumar, Transformation of non-tumorigenic osteoblast-like human osteosarcoma cells by hexavalent chromates: alteration of morphology, induction of anchorage-independence and proteolytic function. Carcinogenesis, 1992. 13(11): p. 2021-7. 17. Dutra, F.R. and E.J. Largent, Osteosarcoma induced by beryllium oxide. Am J Pathol, 1950. 26(2): p. 197-209. 18. Mazabraud, A., [Experimental production of bone sarcomas in the rabbit by a single local injection of beryllium]. Bull Cancer, 1975. 62(1): p. 49-58. 19. Polednak, A.P., Bone cancer among female radium dial workers. Latency periods and incidence rates by time after exposure: brief communication. J Natl Cancer Inst, 1978. 60(1): p. 77-82. 20. Cotterill, S.J., C.M. Wright, M.S. Pearce, A.W. Craft, and U.M.B.T.W. Group, Stature of young people with malignant bone tumors. Pediatr Blood Cancer, 2004. 42(1): p. 59-63. 21. Gelberg, K.H., E.F. Fitzgerald, S. Hwang, and R. Dubrow, Growth and development and other risk factors for osteosarcoma in children and young adults. Int J Epidemiol, 1997. 26(2): p. 272-8. 22. Vigorita, V.J., Orthopaedic pathology. 2008: Lippincott Williams & Wilkins. 23. Marina, N., M. Gebhardt, L. Teot, and R. Gorlick, Biology and therapeutic advances for pediatric osteosarcoma. Oncologist, 2004. 9(4): p. 422-41. 24. Longhi, A., A. Pasini, A. Cicognani, F. Baronio, A. Pellacani, N. Baldini, and G. Bacci, Height as a risk factor for osteosarcoma. J Pediatr Hematol Oncol, 2005. 27(6): p. 314-8. 25. Teodoro, J.G., S.K. Evans, and M.R. Green, Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med (Berl), 2007. 85(11): p. 1175-86. 26. Hauben, E.I., J. Arends, J.P. Vandenbroucke, C.J. van Asperen, E. Van Marck, and P.C. Hogendoorn, Multiple primary malignancies in osteosarcoma patients. Incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma. Eur J Hum Genet, 2003. 11(8): p. 611-8. 27. McIntyre, J.F., B. Smith-Sorensen, S.H. Friend, J. Kassell, A.L. Borresen, Y.X. Yan, C. Russo, J. Sato, N. Barbier, J. Miser, and et al., Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol, 1994. 12(5): p. 925-30. 28. Chandar, N., B. Billig, J. McMaster, and J. Novak, Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer, 1992. 65(2): p. 208-14. 29. Miller, C.W., A. Aslo, A. Won, M. Tan, B. Lampkin, and H.P. Koeffler, Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol, 1996. 122(9): p. 559-65. 30. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell. New York: Garland Science; 2008. Classic textbook now in its 5th Edition, 2010. 31. Longhi, A., M.S. Benassi, L. Molendini, M. Macchiagodena, P. Picci, and G. Bacci, Osteosarcoma in blood relatives. Oncol Rep, 2001. 8(1): p. 131-6. 32. Wu, J.X., P.M. Carpenter, C. Gresens, R. Keh, H. Niman, J.W. Morris, and D. Mercola, The proto-oncogene c-fos is over-expressed in the majority of human osteosarcomas. Oncogene, 1990. 5(7): p. 989-1000. 33. Franchi, A., A. Calzolari, and G. Zampi, Immunohistochemical detection of c-fos and c-jun expression in osseous and cartilaginous tumours of the skeleton. Virchows Arch, 1998. 432(6): p. 515-9. 34. Gamberi, G., M.S. Benassi, T. Bohling, P. Ragazzini, L. Molendini, M.R. Sollazzo, F. Pompetti, M. Merli, G. Magagnoli, A. Balladelli, and P. Picci, C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. Oncology, 1998. 55(6): p. 556-63. 35. Wang, Z.Q., J. Liang, K. Schellander, E.F. Wagner, and A.E. Grigoriadis, c-fos-induced osteosarcoma formation in transgenic mice: cooperativity with c-jun and the role of endogenous c-fos. Cancer Res, 1995. 55(24): p. 6244-51. 36. Leaner, V.D., J.F. Chick, H. Donninger, I. Linniola, A. Mendoza, C. Khanna, and M.J. Birrer, Inhibition of AP-1 transcriptional activity blocks the migration, invasion, and experimental metastasis of murine osteosarcoma. Am J Pathol, 2009. 174(1): p. 265-75. 37. Tan, M.L., P.F. Choong, and C.R. Dass, Direct anti-metastatic efficacy by the DNA enzyme Dz13 and downregulated MMP-2, MMP-9 and MT1-MMP in tumours. Cancer Cell Int, 2010. 10: p. 9. 38. Shimizu, T., T. Ishikawa, E. Sugihara, S. Kuninaka, T. Miyamoto, Y. Mabuchi, Y. Matsuzaki, T. Tsunoda, F. Miya, H. Morioka, R. Nakayama, E. Kobayashi, Y. Toyama, A. Kawai, H. Ichikawa, T. Hasegawa, S. Okada, T. Ito, Y. Ikeda, T. Suda, and H. Saya, c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene, 2010. 29(42): p. 5687-99. 39. Hattinger, C.M., G. Stoico, F. Michelacci, M. Pasello, I. Scionti, D. Remondini, G.C. Castellani, M. Fanelli, K. Scotlandi, P. Picci, and M. Serra, Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines. Genes Chromosomes Cancer, 2009. 48(4): p. 289-309. 40. Xie, X.K., D.S. Yang, Z.M. Ye, and H.M. Tao, Enhancement effect of adenovirus-mediated antisense c-myc and caffeine on the cytotoxicity of cisplatin in osteosarcoma cell lines. Chemotherapy, 2009. 55(6): p. 433-40. 41. Franchi, A., L. Arganini, G. Baroni, A. Calzolari, R. Capanna, D. Campanacci, P. Caldora, L. Masi, M.L. Brandi, and G. Zampi, Expression of transforming growth factor beta isoforms in osteosarcoma variants: association of TGF beta 1 with high-grade osteosarcomas. J Pathol, 1998. 185(3): p. 284-9. 42. Arvanitis, C., P.K. Bendapudi, J.R. Tseng, S.S. Gambhir, and D.W. Felsher, (18)F and (18)FDG PET imaging of osteosarcoma to non-invasively monitor in situ changes in cellular proliferation and bone differentiation upon MYC inactivation. Cancer Biol Ther, 2008. 7(12): p. 1947-51. 43. Navid, F., J.J. Letterio, C.L. Yeung, M. Pegtel, and L.J. Helman, Autocrine Transforming Growth Factor-beta Growth Pathway in Murine Osteosarcoma Cell Lines Associated with Inability to Affect Phosphorylation of Retinoblastoma Protein. Sarcoma, 2000. 4(3): p. 93-102. 44. Hu, Y.S., Y. Pan, W.H. Li, Y. Zhang, J. Li, and B.A. Ma, Int7G24A variant of transforming growth factor-beta receptor 1 is associated with osteosarcoma susceptibility in a Chinese population. Med Oncol, 2011. 28(2): p. 622-5. 45. Hu, Y.S., Y. Pan, W.H. Li, Y. Zhang, J. Li, and B.A. Ma, Association between TGFBR1*6A and osteosarcoma: a Chinese case-control study. BMC Cancer, 2010. 10: p. 169. 46. Rikhof, B., S. de Jong, A.J. Suurmeijer, C. Meijer, and W.T. van der Graaf, The insulin-like growth factor system and sarcomas. J Pathol, 2009. 217(4): p. 469-82. 47. Wang, Y.H., J. Xiong, S.F. Wang, Y. Yu, B. Wang, Y.X. Chen, H.F. Shi, and Y. Qiu, Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in vivo. Mol Cell Biochem, 2010. 341(1-2): p. 225-33. 48. Dong, J., S.J. Demarest, A. Sereno, S. Tamraz, E. Langley, A. Doern, T. Snipas, K. Perron, I. Joseph, S.M. Glaser, S.N. Ho, M.E. Reff, and K. Hariharan, Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response. Mol Cancer Ther, 2010. 9(9): p. 2593-604. 49. Kolb, E.A., D. Kamara, W. Zhang, J. Lin, P. Hingorani, L. Baker, P. Houghton, and R. Gorlick, R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatr Blood Cancer, 2010. 55(1): p. 67-75. 50. Lau, L.F. and S.C. Lam, The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res, 1999. 248(1): p. 44-57. 51. Nishida, T., T. Nakanishi, M. Asano, T. Shimo, and M. Takigawa, Effects of CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro. J Cell Physiol, 2000. 184(2): p. 197-206. 52. Perbal, B., M. Zuntini, D. Zambelli, M. Serra, M. Sciandra, L. Cantiani, E. Lucarelli, P. Picci, and K. Scotlandi, Prognostic value of CCN3 in osteosarcoma. Clin Cancer Res, 2008. 14(3): p. 701-9. 53. Rodda, C.P., M. Kubota, J.A. Heath, P.R. Ebeling, J.M. Moseley, A.D. Care, I.W. Caple, and T.J. Martin, Evidence for a novel parathyroid hormone-related protein in fetal lamb parathyroid glands and sheep placenta: comparisons with a similar protein implicated in humoral hypercalcaemia of malignancy. J Endocrinol, 1988. 117(2): p. 261-71. 54. Yang, R., B.H. Hoang, T. Kubo, H. Kawano, A. Chou, R. Sowers, A.G. Huvos, P.A. Meyers, J.H. Healey, and R. Gorlick, Over-expression of parathyroid hormone Type 1 receptor confers an aggressive phenotype in osteosarcoma. Int J Cancer, 2007. 121(5): p. 943-54. 55. Gagiannis, S., M. Muller, S. Uhlemann, A. Koch, G. Melino, P.H. Krammer, P.P. Nawroth, M. Brune, and T. Schilling, Parathyroid hormone-related protein confers chemoresistance by blocking apoptosis signaling via death receptors and mitochondria. Int J Cancer, 2009. 125(7): p. 1551-7. 56. Berdiaki, A., G.A. Datsis, D. Nikitovic, A. Tsatsakis, P. Katonis, N.K. Karamanos, and G.N. Tzanakakis, Parathyroid hormone (PTH) peptides through the regulation of hyaluronan metabolism affect osteosarcoma cell migration. IUBMB Life, 2010. 62(5): p. 377-86. 57. Pasquini, G.M., R.A. Davey, P.W. Ho, V.P. Michelangeli, V. Grill, S.J. Kaczmarczyk, and J.D. Zajac, Local secretion of parathyroid hormone-related protein by an osteoblastic osteosarcoma (UMR 106-01) cell line results in growth inhibition. Bone, 2002. 31(5): p. 598-605. 58.Jan, Y., M. Matter, J.T. Pai, Y.L. Chen, J. Pilch, M. Komatsu, E. Ong, M. Fukuda, and E. Ruoslahti, A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell, 2004. 116(5): p. 751-62. 59. Janes, S.M. and F.M. Watt, Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol, 2004. 166(3): p. 419-31. 60. Nicholson, K.M. and N.G. Anderson, The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal, 2002. 14(5): p. 381-95. 61. Coniglio, S.J., T.S. Jou, and M. Symons, Rac1 protects epithelial cells against anoikis. J Biol Chem, 2001. 276(30): p. 28113-20. 62. Ley, R., K.E. Ewings, K. Hadfield, E. Howes, K. Balmanno, and S.J. Cook, Extracellular signal-regulated kinases 1/2 are serum-stimulated 'Bim(EL) kinases' that bind to the BH3-only protein Bim(EL) causing its phosphorylation and turnover. J Biol Chem, 2004. 279(10): p. 8837-47. 63. Liao, D. and R.S. Johnson, Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev, 2007. 26(2): p. 281-90. 64. Carmeliet, P., VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005. 69 Suppl 3: p. 4-10. 65. Tran, J., J. Rak, C. Sheehan, S.D. Saibil, E. LaCasse, R.G. Korneluk, and R.S. Kerbel, Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun, 1999. 264(3): p. 781-8. 66. Yancopoulos, G.D., S. Davis, N.W. Gale, J.S. Rudge, S.J. Wiegand, and J. Holash, Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242-8. 67. Lobov, I.B., R.A. Renard, N. Papadopoulos, N.W. Gale, G. Thurston, G.D. Yancopoulos, and S.J. Wiegand, Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3219-24. 68. Kaya, M., T. Wada, T. Akatsuka, S. Kawaguchi, S. Nagoya, M. Shindoh, F. Higashino, F. Mezawa, F. Okada, and S. Ishii, Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res, 2000. 6(2): p. 572-7. 69. Hara, H., T. Akisue, T. Fujimoto, M. Imabori, T. Kawamoto, R. Kuroda, H. Fujioka, T. Yamamoto, M. Doita, and M. Kurosaka, Expression of VEGF and its receptors and angiogenesis in bone and soft tissue tumors. Anticancer Res, 2006. 26(6B): p. 4307-11. 70. Mantadakis, E., G. Kim, J. Reisch, K. McHard, G. Maale, P.J. Leavey, and C. Timmons, Lack of prognostic significance of intratumoral angiogenesis in nonmetastatic osteosarcoma. J Pediatr Hematol Oncol, 2001. 23(5): p. 286-9. 71. Kreuter, M., R. Bieker, S.S. Bielack, T. Auras, H. Buerger, G. Gosheger, H. Jurgens, W.E. Berdel, and R.M. Mesters, Prognostic relevance of increased angiogenesis in osteosarcoma. Clin Cancer Res, 2004. 10(24): p. 8531-7. 72. Ren, B., K.O. Yee, J. Lawler, and R. Khosravi-Far, Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta, 2006. 1765(2): p. 178-88. 73. Cai, J., C. Parr, G. Watkins, W.G. Jiang, and M. Boulton, Decreased pigment epithelium-derived factor expression in human breast cancer progression. Clin Cancer Res, 2006. 12(11 Pt 1): p. 3510-7. 74. Clark, J.C., D.M. Thomas, P.F. Choong, and C.R. Dass, RECK--a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev, 2007. 26(3-4): p. 675-83. 75. Quan, G.M., J. Ojaimi, Y. Li, V. Kartsogiannis, H. Zhou, and P.F. Choong, Localization of pigment epithelium-derived factor in growing mouse bone. Calcif Tissue Int, 2005. 76(2): p. 146-53. 76. Moses, M.A., D. Wiederschain, I. Wu, C.A. Fernandez, V. Ghazizadeh, W.S. Lane, E. Flynn, A. Sytkowski, T. Tao, and R. Langer, Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2645-50. 77. Ek, E.T., C.R. Dass, K.G. Contreras, and P.F. Choong, Pigment epithelium-derived factor overexpression inhibits orthotopic osteosarcoma growth, angiogenesis and metastasis. Cancer Gene Ther, 2007. 14(7): p. 616-26. 78. Ek, E.T., C.R. Dass, K.G. Contreras, and P.F. Choong, Inhibition of orthotopic osteosarcoma growth and metastasis by multitargeted antitumor activities of pigment epithelium-derived factor. Clin Exp Metastasis, 2007. 24(2): p. 93-106. 79. Luo, B.H., C.V. Carman, and T.A. Springer, Structural basis of integrin regulation and signaling. Annu Rev Immunol, 2007. 25: p. 619-47. 80. Birkedal-Hansen, H., W.G. Moore, M.K. Bodden, L.J. Windsor, B. Birkedal-Hansen, A. DeCarlo, and J.A. Engler, Matrix metalloproteinases: a review. Crit Rev Oral Biol Med, 1993. 4(2): p. 197-250. 81. Chakraborti, S., M. Mandal, S. Das, A. Mandal, and T. Chakraborti, Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem, 2003. 253(1-2): p. 269-85. 82. Oh, J., R. Takahashi, S. Kondo, A. Mizoguchi, E. Adachi, R.M. Sasahara, S. Nishimura, Y. Imamura, H. Kitayama, D.B. Alexander, C. Ide, T.P. Horan, T. Arakawa, H. Yoshida, S. Nishikawa, Y. Itoh, M. Seiki, S. Itohara, C. Takahashi, and M. Noda, The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 2001. 107(6): p. 789-800. 83. Bergers, G., R. Brekken, G. McMahon, T.H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan, Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000. 2(10): p. 737-44. 84. Burbridge, M.F., F. Coge, J.P. Galizzi, J.A. Boutin, D.C. West, and G.C. Tucker, The role of the matrix metalloproteinases during in vitro vessel formation. Angiogenesis, 2002. 5(3): p. 215-26. 85. Masson, V., L.R. de la Ballina, C. Munaut, B. Wielockx, M. Jost, C. Maillard, S. Blacher, K. Bajou, T. Itoh, S. Itohara, Z. Werb, C. Libert, J.M. Foidart, and A. Noel, Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J, 2005. 19(2): p. 234-6. 86. Choong, P.F. and A.P. Nadesapillai, Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res, 2003(415 Suppl): p. S46-58. 87. Pillay, V., C.R. Dass, and P.F. Choong, The urokinase plasminogen activator receptor as a gene therapy target for cancer. Trends Biotechnol, 2007. 25(1): p. 33-9. 88. Choong, P.F., M. Ferno, M. Akerman, H. Willen, E. Langstrom, P. Gustafson, T. Alvegard, and A. Rydholm, Urokinase-plasminogen-activator levels and prognosis in 69 soft-tissue sarcomas. Int J Cancer, 1996. 69(4): p. 268-72. 89. Dass, C.R., A.P. Nadesapillai, D. Robin, M.L. Howard, J.L. Fisher, H. Zhou, and P.F. Choong, Downregulation of uPAR confirms link in growth and metastasis of osteosarcoma. Clin Exp Metastasis, 2005. 22(8): p. 643-52. 90. Guise, T.A. and J.M. Chirgwin, Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res, 2003(415 Suppl): p. S32-8. 91. Quinn, J.M., K. Itoh, N. Udagawa, K. Hausler, H. Yasuda, N. Shima, A. Mizuno, K. Higashio, N. Takahashi, T. Suda, T.J. Martin, and M.T. Gillespie, Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res, 2001. 16(10): p. 1787-94. 92. Kingsley, L.A., P.G. Fournier, J.M. Chirgwin, and T.A. Guise, Molecular biology of bone metastasis. Mol Cancer Ther, 2007. 6(10): p. 2609-17. 93. Chirgwin, J.M. and T.A. Guise, Skeletal metastases: decreasing tumor burden by targeting the bone microenvironment. J Cell Biochem, 2007. 102(6): p. 1333-42. 94. Kinpara, K., M. Mogi, M. Kuzushima, and A. Togari, Osteoclast differentiation factor in human osteosarcoma cell line. J Immunoassay, 2000. 21(4): p. 327-40. 95. Hofbauer, L.C. and A.E. Heufelder, Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur J Endocrinol, 1998. 139(2): p. 152-4. 96. Takayanagi, H., The role of NFAT in osteoclast formation. Ann N Y Acad Sci, 2007. 1116: p. 227-37. 97. Le Gall, C., A. Bellahcene, E. Bonnelye, J.A. Gasser, V. Castronovo, J. Green, J. Zimmermann, and P. Clezardin, A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res, 2007. 67(20): p. 9894-902. 98. Husmann, K., R. Muff, M.E. Bolander, G. Sarkar, W. Born, and B. Fuchs, Cathepsins and osteosarcoma: Expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog, 2008. 47(1): p. 66-73. 99. Schlessinger, J., New roles for Src kinases in control of cell survival and angiogenesis. Cell, 2000. 100(3): p. 293-6. 100. Glantschnig, H., J.E. Fisher, G. Wesolowski, G.A. Rodan, and A.A. Reszka, M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ, 2003. 10(10): p. 1165-77. 101. Rucci, N., M. Susa, and A. Teti, Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med Chem, 2008. 8(3): p. 342-9. 102. Akiyama, T., C.R. Dass, and P.F. Choong, Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol Cancer Ther, 2008. 7(11): p. 3461-9. 103. Tanaka, S., K. Nakamura, N. Takahasi, and T. Suda, Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev, 2005. 208: p. 30-49. 104. Lamoureux, F., P. Richard, Y. Wittrant, S. Battaglia, P. Pilet, V. Trichet, F. Blanchard, F. Gouin, B. Pitard, D. Heymann, and F. Redini, Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Res, 2007. 67(15): p. 7308-18. 105. Link, M.P., A.M. Goorin, M. Horowitz, W.H. Meyer, J. Belasco, A. Baker, A. Ayala, and J. Shuster, Adjuvant chemotherapy of high-grade osteosarcoma of the extremity. Updated results of the Multi-Institutional Osteosarcoma Study. Clin Orthop Relat Res, 1991(270): p. 8-14. 106. Bacci, G., A. Longhi, S. Ferrari, A. Briccoli, D. Donati, M. De Paolis, and M. Versari, Prognostic significance of serum lactate dehydrogenase in osteosarcoma of the extremity: experience at Rizzoli on 1421 patients treated over the last 30 years. Tumori, 2004. 90(5): p. 478-84. 107. Mankin, H.J., C.J. Mankin, and M.A. Simon, The hazards of the biopsy, revisited. Members of the Musculoskeletal Tumor Society. J Bone Joint Surg Am, 1996. 78(5): p. 656-63. 108. Hau, A., I. Kim, S. Kattapuram, F.J. Hornicek, A.E. Rosenberg, M.C. Gebhardt, and H.J. Mankin, Accuracy of CT-guided biopsies in 359 patients with musculoskeletal lesions. Skeletal Radiol, 2002. 31(6): p. 349-53. 109. Mitsuyoshi, G., N. Naito, A. Kawai, T. Kunisada, A. Yoshida, H. Yanai, S. Dendo, T. Yoshino, S. Kanazawa, and T. Ozaki, Accurate diagnosis of musculoskeletal lesions by core needle biopsy. J Surg Oncol, 2006. 94(1): p. 21-7. 110. Jelinek, J.S., M.D. Murphey, J.A. Welker, R.M. Henshaw, M.J. Kransdorf, B.M. Shmookler, and M.M. Malawer, Diagnosis of primary bone tumors with image-guided percutaneous biopsy: experience with 110 tumors. Radiology, 2002. 223(3): p. 731-7. 111. Altuntas, A.O., J. Slavin, P.J. Smith, S.M. Schlict, G.J. Powell, S. Ngan, G. Toner, and P.F. Choong, Accuracy of computed tomography guided core needle biopsy of musculoskeletal tumours. ANZ J Surg, 2005. 75(4): p. 187-91. 112. Enneking, W.F., A system of staging musculoskeletal neoplasms. Clin Orthop Relat Res, 1986(204): p. 9-24. 113. Eilber, F.R. and G. Rosen, Adjuvant chemotherapy for osteosarcoma. Semin Oncol, 1989. 16(4): p. 312-22. 114. Link, M.P., A.M. Goorin, A.W. Miser, A.A. Green, C.B. Pratt, J.B. Belasco, J. Pritchard, J.S. Malpas, A.R. Baker, J.A. Kirkpatrick, and et al., The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med, 1986. 314(25): p. 1600-6. 115. Saeter, G., J. Hoie, A.E. Stenwig, A.K. Johansson, E. Hannisdal, and O.P. Solheim, Systemic relapse of patients with osteogenic sarcoma. Prognostic factors for long term survival. Cancer, 1995. 75(5): p. 1084-93. 116. Chou, A.J., P.R. Merola, L.H. Wexler, R.G. Gorlick, Y.M. Vyas, J.H. Healey, M.P. LaQuaglia, A.G. Huvos, and P.A. Meyers, Treatment of osteosarcoma at first recurrence after contemporary therapy: the Memorial Sloan-Kettering Cancer Center experience. Cancer, 2005. 104(10): p. 2214-21. 117. Kempf-Bielack, B., S.S. Bielack, H. Jurgens, D. Branscheid, W.E. Berdel, G.U. Exner, U. Gobel, K. Helmke, G. Jundt, H. Kabisch, M. Kevric, T. Klingebiel, R. Kotz, R. Maas, R. Schwarz, M. Semik, J. Treuner, A. Zoubek, and K. Winkler, Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J Clin Oncol, 2005. 23(3): p. 559-68. 118. Ferrari, S., A. Briccoli, M. Mercuri, F. Bertoni, P. Picci, A. Tienghi, A.B. Del Prever, F. Fagioli, A. Comandone, and G. Bacci, Postrelapse survival in osteosarcoma of the extremities: prognostic factors for long-term survival. J Clin Oncol, 2003. 21(4): p. 710-5. 119. Carli, M., E. Passone, G. Perilongo, and G. Bisogno, Ifosfamide in pediatric solid tumors. Oncology, 2003. 65 Suppl 2: p. 99-104. 120. Fuchs, N., S.S. Bielack, D. Epler, P. Bieling, G. Delling, D. Korholz, N. Graf, U. Heise, H. Jurgens, R. Kotz, M. Salzer-Kuntschik, P. Weinel, M. Werner, and K. Winkler, Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group''s protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann Oncol, 1998. 9(8): p. 893-9. 121. Bacci, G., S. Ferrari, F. Bertoni, P. Ruggieri, P. Picci, A. Longhi, R. Casadei, N. Fabbri, C. Forni, M. Versari, and M. Campanacci, Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol, 2000. 18(24): p. 4016-27. 122. Goorin, A.M., M.B. Harris, M. Bernstein, W. Ferguson, M. Devidas, G.P. Siegal, M.C. Gebhardt, C.L. Schwartz, M. Link, and H.E. Grier, Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J Clin Oncol, 2002. 20(2): p. 426-33. 123. Meyers, P.A., C.L. Schwartz, M.D. Krailo, J.H. Healey, M.L. Bernstein, D. Betcher, W.S. Ferguson, M.C. Gebhardt, A.M. Goorin, M. Harris, E. Kleinerman, M.P. Link, H. Nadel, M. Nieder, G.P. Siegal, M.A. Weiner, R.J. Wells, R.B. Womer, H.E. Grier, and G. Children''s Oncology, Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival--a report from the Children''s Oncology Group. J Clin Oncol, 2008. 26(4): p. 633-8. 124. Schwartz, C.L., L.H. Wexler, and D. M., Non-metastatic osteosarcoma: response based augmentation of therapy. 2006. 125. Jeys, L.M., R.J. Grimer, S.R. Carter, R.M. Tillman, and A. Abudu, Post operative infection and increased survival in osteosarcoma patients: are they associated? Ann Surg Oncol, 2007. 14(10): p. 2887-95. 126. Meyers, P.A., Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther, 2009. 9(8): p. 1035-49. 127. Sone, S., S. Mutsuura, M. Ogawara, and E. Tsubura, Potentiating effect of muramyl dipeptide and its lipophilic analog encapsulated in liposomes on tumor cell killing by human monocytes. J Immunol, 1984. 132(4): p. 2105-10. 128. Fidler, I.J., N.O. Brown, and I.R. Hart, Species variability for toxicity of free and liposome-encapsulated muramyl peptides administered intravenously. J Biol Response Mod, 1985. 4(3): p. 298-309. 129. Hunsberger, S., B. Freidlin, and M.A. Smith, Complexities in interpretation of osteosarcoma clinical trial results. J Clin Oncol, 2008. 26(18): p. 3103-4; author reply 3104-5. 130. Anderson, P.M., S.N. Markovic, J.A. Sloan, M.L. Clawson, M. Wylam, C.A. Arndt, W.A. Smithson, P. Burch, M. Gornet, and E. Rahman, Aerosol granulocyte macrophage-colony stimulating factor: a low toxicity, lung-specific biological therapy in patients with lung metastases. Clin Cancer Res, 1999. 5(9): p. 2316-23. 131. Inoki, K., M.N. Corradetti, and K.L. Guan, Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet, 2005. 37(1): p. 19-24. 132. Zhou, Q., Z. Deng, Y. Zhu, H. Long, S. Zhang, and J. Zhao, mTOR/p70S6K signal transduction pathway contributes to osteosarcoma progression and patients'' prognosis. Med Oncol, 2010. 27(4): p. 1239-45. 133. Wan, X., A. Mendoza, C. Khanna, and L.J. Helman, Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res, 2005. 65(6): p. 2406-11. 134. Houghton, P.J., C.L. Morton, E.A. Kolb, R. Gorlick, R. Lock, H. Carol, C.P. Reynolds, J.M. Maris, S.T. Keir, C.A. Billups, and M.A. Smith, Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer, 2008. 50(4): p. 799-805. 135. Chawla, S., A. Tolcher, A. Staddon, S. Schuetze, G. D’Amato, J. Blay, K. Sankhala, S. Daly, V. Rivera, and G. Demetri, Updated results of a phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas. J Clin Oncol, 2006. 24(Suppl 18): p. 9505a. 136. Abuzzahab, M.J., A. Schneider, A. Goddard, F. Grigorescu, C. Lautier, E. Keller, W. Kiess, J. Klammt, J. Kratzsch, D. Osgood, R. Pfaffle, K. Raile, B. Seidel, R.J. Smith, S.D. Chernausek, and G. Intrauterine Growth Retardation Study, IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med, 2003. 349(23): p. 2211-22. 137. Ouban, A., P. Muraca, T. Yeatman, and D. Coppola, Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol, 2003. 34(8): p. 803-8. 138. Shimizu, C., T. Hasegawa, Y. Tani, F. Takahashi, M. Takeuchi, T. Watanabe, M. Ando, N. Katsumata, and Y. Fujiwara, Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis. Hum Pathol, 2004. 35(12): p. 1537-42. 139. Chan, J.M., M.J. Stampfer, E. Giovannucci, P.H. Gann, J. Ma, P. Wilkinson, C.H. Hennekens, and M. Pollak, Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 1998. 279(5350): p. 563-6. 140. Ma, J., M.N. Pollak, E. Giovannucci, J.M. Chan, Y. Tao, C.H. Hennekens, and M.J. Stampfer, Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst, 1999. 91(7): p. 620-5. 141. Kaleko, M., W.J. Rutter, and A.D. Miller, Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol, 1990. 10(2): p. 464-73. 142. Kolb, E.A., R. Gorlick, P.J. Houghton, C.L. Morton, R. Lock, H. Carol, C.P. Reynolds, J.M. Maris, S.T. Keir, C.A. Billups, and M.A. Smith, Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer, 2008. 50(6): p. 1190-7. 143. Kurmasheva, R.T., L. Dudkin, C. Billups, L.V. Debelenko, C.L. Morton, and P.J. Houghton, The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res, 2009. 69(19): p. 7662-71. 144. Olmos, D., S. Postel-Vinay, L.R. Molife, S.H. Okuno, S.M. Schuetze, M.L. Paccagnella, G.N. Batzel, D. Yin, K. Pritchard-Jones, I. Judson, F.P. Worden, A. Gualberto, M. Scurr, J.S. de Bono, and P. Haluska, Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing''s sarcoma: a phase 1 expansion cohort study. Lancet Oncol, 2010. 11(2): p. 129-35. 145. Haluska, P., H.M. Shaw, G.N. Batzel, D. Yin, J.R. Molina, L.R. Molife, T.A. Yap, M.L. Roberts, A. Sharma, A. Gualberto, A.A. Adjei, and J.S. de Bono, Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res, 2007. 13(19): p. 5834-40. 146. Sulzbacher, I., M. Traxler, I. Mosberger, S. Lang, and A. Chott, Platelet-derived growth factor-AA and -alpha receptor expression suggests an autocrine and/or paracrine loop in osteosarcoma. Mod Pathol, 2000. 13(6): p. 632-7. 147. Kubo, T., S. Piperdi, J. Rosenblum, C.R. Antonescu, W. Chen, H.S. Kim, A.G. Huvos, R. Sowers, P.A. Meyers, J.H. Healey, and R. Gorlick, Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer, 2008. 112(10): p. 2119-29. 148. Bond, M., M.L. Bernstein, A. Pappo, K.R. Schultz, M. Krailo, S.M. Blaney, and P.C. Adamson, A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children''s Oncology Group study. Pediatr Blood Cancer, 2008. 50(2): p. 254-8. 149. Bargmann, C.I. and R.A. Weinberg, Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proc Natl Acad Sci U S A, 1988. 85(15): p. 5394-8. 150. Guo, W., J.H. Healey, P.A. Meyers, M. Ladanyi, A.G. Huvos, J.R. Bertino, and R. Gorlick, Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res, 1999. 5(3): p. 621-7. 151. Trippett, T., et al, High dose trimetrexate with leucovorin protection in recurrent childhood malignancies: a Phase II trial. Journal of Oncology 1999. 152. O''Connor, O.A., S. Horwitz, P. Hamlin, C. Portlock, C.H. Moskowitz, D. Sarasohn, E. Neylon, J. Mastrella, R. Hamelers, B. Macgregor-Cortelli, M. Patterson, V.E. Seshan, F. Sirotnak, M. Fleisher, D.R. Mould, M. Saunders, and A.D. Zelenetz, Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J Clin Oncol, 2009. 27(26): p. 4357-64. 153. Krug, L.M., C.G. Azzoli, M.G. Kris, V.A. Miller, N.Z. Khokhar, W. Tong, M.S. Ginsberg, E. Venkatraman, L. Tyson, B. Pizzo, V. Baez, K.K. Ng, and F.M. Sirotnak, 10-propargyl-10-deazaaminopterin: an antifolate with activity in patients with previously treated non-small cell lung cancer. Clin Cancer Res, 2003. 9(6): p. 2072-8. 154 Krug, L.M., R.T. Heelan, M.G. Kris, E. Venkatraman, and F.M. Sirotnak, Phase II trial of pralatrexate (10-propargyl-10-deazaaminopterin, PDX) in patients with unresectable malignant pleural mesothelioma. J Thorac Oncol, 2007. 2(4): p. 317-20. 155. Chou, A.J., et al Phase Ib/ IIa study of sustained release lipid inhalation targeting cisplatin by inhalation in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung,. Journal of Clinical Oncology, 2007. 156. Davies Cde, L., L.M. Lundstrom, J. Frengen, L. Eikenes, S.O. Bruland, O. Kaalhus, M.H. Hjelstuen, and C. Brekken, Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res, 2004. 64(2): p. 547-53. 157. Skubitz, K.M., Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest, 2003. 21(2): p. 167-76. 158. van Beek, E.R., L.H. Cohen, I.M. Leroy, F.H. Ebetino, C.W. Lowik, and S.E. Papapoulos, Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone, 2003. 33(5): p. 805-11. 159. Ashton, J.A., J.P. Farese, R.J. Milner, L.M. Lee-Ambrose, and J.M. van Gilder, Investigation of the effect of pamidronate disodium on the in vitro viability of osteosarcoma cells from dogs. Am J Vet Res, 2005. 66(5): p. 885-91. 160. Cheng, Y.Y., L. Huang, K.M. Lee, K. Li, and S.M. Kumta, Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr Blood Cancer, 2004. 42(5): p. 410-5. 161. Maris, J.M., J. Courtright, P.J. Houghton, C.L. Morton, R. Gorlick, E.A. Kolb, R. Lock, M. Tajbakhsh, C.P. Reynolds, S.T. Keir, J. Wu, and M.A. Smith, Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer, 2008. 50(3): p. 581-7. 162. Yu, D., S. Fu, Z. Cao, M. Bao, G. Zhang, Y. Pan, W. Liu, and Q. Zhou, Unraveling the novel anti-osteosarcoma function of coptisine and its mechanisms. Toxicol Lett, 2014. 226(3): p. 328-36. 163. Zhang, Y.H., H.D. Li, B. Li, S.D. Jiang, and L.S. Jiang, Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells. Oncol Rep, 2014. 31(2): p. 919-25. 164. Fu, Z., B. Deng, Y. Liao, L. Shan, F. Yin, Z. Wang, H. Zeng, D. Zuo, Y. Hua, and Z. Cai, The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer, 2013. 13: p. 580. 165. Zhang, Y., S. Sun, J. Chen, P. Ren, Y. Hu, Z. Cao, H. Sun, and Y. Ding, Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumour Biol, 2014. 35(2): p. 1619-25. 166. Bao, M., Z. Cao, D. Yu, S. Fu, G. Zhang, P. Yang, Y. Pan, B. Yang, H. Han, and Q. Zhou, Columbamine suppresses the proliferation and neovascularization of metastatic osteosarcoma U2OS cells with low cytotoxicity. Toxicol Lett, 2012. 215(3): p. 174-80. 167. Xie, X.B., J.Q. Yin, L.L. Wen, Z.H. Gao, C.Y. Zou, J. Wang, G. Huang, Q.L. Tang, C. Colombo, W.L. He, Q. Jia, and J.N. Shen, Critical role of heat shock protein 27 in bufalin-induced apoptosis in human osteosarcomas: a proteomic-based research. PLoS One, 2012. 7(10): p. e47375. 168. Chang, I.C., Y.J. Huang, T.I. Chiang, C.W. Yeh, and L.S. Hsu, Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull, 2010. 33(5): p. 816-24. 169. Petrilli, A.S., B. de Camargo, V.O. Filho, P. Bruniera, A.L. Brunetto, R. Jesus-Garcia, O.P. Camargo, W. Pena, P. Pericles, A. Davi, J.D. Prospero, M.T. Alves, C.R. Oliveira, C.R. Macedo, W.L. Mendes, M.T. Almeida, M.L. Borsato, T.M. dos Santos, J. Ortega, E. Consentino, S. Brazilian Osteosarcoma Treatment Group, III, and Iv, Results of the Brazilian Osteosarcoma Treatment Group Studies III and IV: prognostic factors and impact on survival. J Clin Oncol, 2006. 24(7): p. 1161-8. 170. Bielack, S.S., B. Kempf-Bielack, G. Delling, G.U. Exner, S. Flege, K. Helmke, R. Kotz, M. Salzer-Kuntschik, M. Werner, W. Winkelmann, A. Zoubek, H. Jurgens, and K. Winkler, Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol, 2002. 20(3): p. 776-90. 171. Wu, P.K., W.M. Chen, C.F. Chen, O.K. Lee, C.K. Haung, and T.H. Chen, Primary osteogenic sarcoma with pulmonary metastasis: clinical results and prognostic factors in 91 patients. Jpn J Clin Oncol, 2009. 39(8): p. 514-22. 172. Poon, K.B., S.H. Chien, G.T. Lin, and G.J. Wang, Impact of national health insurance on the survival rate of patients with osteosarcoma in Taiwan: review of 74 patients. Kaohsiung J Med Sci, 2004. 20(5): p. 230-4. 173. Stiller, C.A., K.J. Bunch, and I.J. Lewis, Ethnic group and survival from childhood cancer: report from the UK Children''s Cancer Study Group. Br J Cancer, 2000. 82(7): p. 1339-43. 174. Lin, C.-C., J.-K.L. And, and C.-H. Chang, Evaluation of hepatoprotective effects of “Chhit-Chan-Than” from Taiwan. Pharmaceutical Biology, 1995. 33(2): p. 139-143. 175. Lee, M.J., H.M. Chen, B.S. Tzang, C.W. Lin, C.J. Wang, J.Y. Liu, and S.H. Kao, Ocimum gratissimum Aqueous Extract Protects H9c2 Myocardiac Cells from H(2)O(2)-Induced Cell Apoptosis through Akt Signalling. Evid Based Complement Alternat Med, 2011. 2011. 176. Aziba, P.I., D. Bass, and Y. Elegbe, Pharmacological investigation of Ocimum gratissimum in rodents. Phytother Res, 1999. 13(5): p. 427-9. 177. Ilori, M., A.O. Sheteolu, E.A. Omonigbehin, and A.A. Adeneye, Antidiarrhoeal activities of Ocimum gratissimum (Lamiaceae). J Diarrhoeal Dis Res, 1996. 14(4): p. 283-5. 178. Ayisi, N.K. and C. Nyadedzor, Comparative in vitro effects of AZT and extracts of Ocimum gratissimum, Ficus polita, Clausena anisata, Alchornea cordifolia, and Elaeophorbia drupifera against HIV-1 and HIV-2 infections. Antiviral Res, 2003. 58(1): p. 25-33. 179. Aguiyi, J.C., C.I. Obi, S.S. Gang, and A.C. Igweh, Hypoglycaemic activity of Ocimum gratissimum in rats. Fitoterapia, 2000. 71(4): p. 444-6. 180. George, S. and P. Chaturvedi, A comparative study of the antioxidant properties of two different species of Ocimum of southern Africa on alcohol-induced oxidative stress. J Med Food, 2009. 12(5): p. 1154-8. 181. Li, P.C., Y.W. Chiu, Y.M. Lin, C.H. Day, G.Y. Hwang, P. Pai, F.J. Tsai, C.H. Tsai, Y.C. Kuo, H.C. Chang, J.Y. Liu, and C.Y. Huang, Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl(4)-Induced Liver Cirrhosis. Evid Based Complement Alternat Med, 2012. 2012: p. 139045. 182. Chang, H.-C., Y.-W. Chiu, Y.-M. Lin, R.-J. Chen, J.A. Lin, F.-J. Tsai, C.-H. Tsai, Y.-C. Kuo, J.-Y. Liu, and C.-Y. Huang, Herbal supplement attenuation of cardiac fibrosis in rats with CCL4-induced liver cirrhosis. Chinese Journal of Physiology, 2014. 57(1): p. 41-47. 183. Nangia-Makker, P., L. Tait, M.P. Shekhar, E. Palomino, V. Hogan, M.P. Piechocki, T. Funasaka, and A. Raz, Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum gratissimum. Int J Cancer, 2007. 121(4): p. 884-94. 184. Chen, H.M., M.J. Lee, C.Y. Kuo, P.L. Tsai, J.Y. Liu, and S.H. Kao, Ocimum gratissimum Aqueous Extract Induces Apoptotic Signalling in Lung Adenocarcinoma Cell A549. Evid Based Complement Alternat Med, 2011. 2011. 185. Lew, D.P. and F.A. Waldvogel, Osteomyelitis. Lancet, 2004. 364(9431): p. 369-79. 186. Waldvogel, F.A., G. Medoff, and M.N. Swartz, Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects. N Engl J Med, 1970. 282(4): p. 198-206. 187. Lazzarini, L., B.A. Lipsky, and J.T. Mader, Antibiotic treatment of osteomyelitis: what have we learned from 30 years of clinical trials? Int J Infect Dis, 2005. 9(3): p. 127-38. 188. Zhao, L., P.K. Chu, Y. Zhang, and Z. Wu, Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater, 2009. 91(1): p. 470-80. 189. Radin, S. and P. Ducheyne, Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials, 2007. 28(9): p. 1721-9. 190. Alt, V., A. Bitschnau, J. Osterling, A. Sewing, C. Meyer, R. Kraus, S.A. Meissner, S. Wenisch, E. Domann, and R. Schnettler, The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials, 2006. 27(26): p. 4627-34. 191. Stigter, M., K. de Groot, and P. Layrolle, Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials, 2002. 23(20): p. 4143-53. 192. Swanson, T.E., X. Cheng, and C. Friedrich, Development of chitosan-vancomycin antimicrobial coatings on titanium implants. J Biomed Mater Res A, 2011. 97(2): p. 167-76. 193. Ravi Kumar, M.N., A review of chitin and chitosan applications. Reactive and functional polymers, 2000. 46(1): p. 1-27. 194. Schafer, M., T.R. Schneider, and G.M. Sheldrick, Crystal structure of vancomycin. Structure, 1996. 4(12): p. 1509-15. 195. Cevher, E., Z. Orhan, L. Mulazimoglu, D. Sensoy, M. Alper, A. Yildiz, and Y. Ozsoy, Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Int J Pharm, 2006. 317(2): p. 127-35. 196. Cerchiara, T., B. Luppi, F. Bigucci, M. Petrachi, I. Orienti, and V. Zecchi, Controlled release of vancomycin from freeze-dried chitosan salts coated with different fatty acids by spray-drying. J Microencapsul, 2003. 20(4): p. 473-8. 197. Bigucci, F., B. Luppi, T. Cerchiara, M. Sorrenti, G. Bettinetti, L. Rodriguez, and V. Zecchi, Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci, 2008. 35(5): p. 435-41. 198. Yang, C.-C., C.-C. Lin, and S.-K. Yen, Electrochemical deposition of vancomycin/chitosan composite on Ti alloy. Journal of The Electrochemical Society, 2011. 158(12): p. E152-E158. 199. Detjen, K.M., F.H. Brembeck, M. Welzel, A. Kaiser, H. Haller, B. Wiedenmann, and S. Rosewicz, Activation of protein kinase Calpha inhibits growth of pancreatic cancer cells via p21(cip)-mediated G(1) arrest. J Cell Sci, 2000. 113 ( Pt 17): p. 3025-35. 200. Wu, T.T., Y.H. Hsieh, Y.S. Hsieh, and J.Y. Liu, Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. J Cell Biochem, 2008. 103(1): p. 9-20. 201. Lin, C.M. and S.K. Yen, Characterization and bond strength of electrolytic HA/TiO2 double layers for orthopaedic applications. J Mater Sci Mater Med, 2005. 16(10): p. 889-97. 202. Ferraz, M.P., A.Y. Mateus, J.C. Sousa, and F.J. Monteiro, Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A, 2007. 81(4): p. 994-1004. 203. Kirkwood, K.L., R. Dziak, and P.G. Bradford, Inositol trisphosphate receptor gene expression and hormonal regulation in osteoblast-like cell lines and primary osteoblastic cell cultures. J Bone Miner Res, 1996. 11(12): p. 1889-96. 204. Morais, S., J.P. Sousa, M.H. Fernandes, and G.S. Carvalho, In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts. Biomaterials, 1998. 19(1-3): p. 13-21. 205. Shackelford, C., G. Long, J. Wolf, C. Okerberg, and R. Herbert, Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol, 2002. 30(1): p. 93-6. 206. Nangia-Makker, P., T. Raz, L. Tait, M.P. Shekhar, H. Li, V. Balan, H. Makker, R. Fridman, K. Maddipati, and A. Raz, Ocimum gratissimum retards breast cancer growth and progression and is a natural inhibitor of matrix metalloproteases. Cancer Biol Ther, 2013. 14(5): p. 417-27. 207. Hanisch, A., H.H. Sillje, and E.A. Nigg, Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J, 2006. 25(23): p. 5504-15. 208. Rice, L., C.E. Waters, J. Eccles, H. Garside, P. Sommer, P. Kay, F.H. Blackhall, L. Zeef, B. Telfer, I. Stratford, R. Clarke, D. Singh, A. Stevens, A. White, and D.W. Ray, Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor. J Endocrinol, 2008. 198(3): p. 499-509. 209. Taylor, S.S., E. Ha, and F. McKeon, The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol, 1998. 142(1): p. 1-11. 210. Kops, G.J., D.R. Foltz, and D.W. Cleveland, Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A, 2004. 101(23): p. 8699-704. 211. Kops, G.J., B.A. Weaver, and D.W. Cleveland, On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 2005. 5(10): p. 773-85. 212. Wan, X., C. Yeung, S.Y. Kim, J.G. Dolan, V.N. Ngo, S. Burkett, J. Khan, L.M. Staudt, and L.J. Helman, Identification of FoxM1/Bub1b signaling pathway as a required component for growth and survival of rhabdomyosarcoma. Cancer Res, 2012. 72(22): p. 5889-99. 213. Fornace, A.J., Jr., D.W. Nebert, M.C. Hollander, J.D. Luethy, M. Papathanasiou, J. Fargnoli, and N.J. Holbrook, Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol, 1989. 9(10): p. 4196-203. 214. Lord, K.A., B. Hoffman-Liebermann, and D.A. Liebermann, Sequence of MyD116 cDNA: a novel myeloid differentiation primary response gene induced by IL6. Nucleic Acids Res, 1990. 18(9): p. 2823. 215. Hollander, M.C., Q. Zhan, I. Bae, and A.J. Fornace, Jr., Mammalian GADD34, an apoptosis- and DNA damage-inducible gene. J Biol Chem, 1997. 272(21): p. 13731-7. 216. Hollander, M.C., O. Kovalsky, J.M. Salvador, K.E. Kim, A.D. Patterson, D.C. Haines, and A.J. Fornace, Jr., Dimethylbenzanthracene carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res, 2001. 61(6): p. 2487-91. 217. Hollander, M.C., M.S. Sheikh, K. Yu, Q. Zhan, M. Iglesias, C. Woodworth, and A.J. Fornace, Jr., Activation of Gadd34 by diverse apoptotic signals and suppression of its growth inhibitory effects by apoptotic inhibitors. Int J Cancer, 2001. 96(1): p. 22-31. 218. Adler, H.T., R. Chinery, D.Y. Wu, S.J. Kussick, J.M. Payne, A.J. Fornace, Jr., and D.C. Tkachuk, Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol, 1999. 19(10): p. 7050-60. 219. Hollander, M.C., S. Poola-Kella, and A.J. Fornace, Jr., Gadd34 functional domains involved in growth suppression and apoptosis. Oncogene, 2003. 22(25): p. 3827-32. 220. Sarkar, D., Z.Z. Su, I.V. Lebedeva, M. Sauane, R.V. Gopalkrishnan, K. Valerie, P. Dent, and P.B. Fisher, mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci U S A, 2002. 99(15): p. 10054-9. 221. Lamy, E., C. Herz, S. Lutz-Bonengel, A. Hertrampf, M.R. Marton, and V. Mersch-Sundermann, The MAPK pathway signals telomerase modulation in response to isothiocyanate-induced DNA damage of human liver cancer cells. PLoS One, 2013. 8(1): p. e53240. 222. Young, M.M., Y. Takahashi, O. Khan, S. Park, T. Hori, J. Yun, A.K. Sharma, S. Amin, C.D. Hu, J. Zhang, M. Kester, and H.G. Wang, Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem, 2012. 287(15): p. 12455-68. 223. Zhang, Y.B., J.L. Gong, T.Y. Xing, S.P. Zheng, and W. Ding, Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis, 2013. 4: p. e550. 224. Nakatsu, N., Y. Yoshida, K. Yamazaki, T. Nakamura, S. Dan, Y. Fukui, and T. Yamori, Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays. Mol Cancer Ther, 2005. 4(3): p. 399-412. 225. Gehrmann, M., Drug evaluation: STA-4783--enhancing taxane efficacy by induction of Hsp70. Curr Opin Investig Drugs, 2006. 7(6): p. 574-80. 226. Tabuchi, Y., H. Ando, I. Takasaki, L.B. Feril, Jr., Q.L. Zhao, R. Ogawa, N. Kudo, K. Tachibana, and T. Kondo, Identification of genes responsive to low intensity pulsed ultrasound in a human leukemia cell line Molt-4. Cancer Lett, 2007. 246(1-2): p. 149-56. 227. Daigeler, A., A.M. Chromik, K. Haendschke, S. Emmelmann, M. Siepmann, K. Hensel, G. Schmitz, L. Klein-Hitpass, H.U. Steinau, M. Lehnhardt, and J. Hauser, Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma. Ultrasound Med Biol, 2010. 36(11): p. 1893-906. 228. Lisse, T.S., T. Liu, M. Irmler, J. Beckers, H. Chen, J.S. Adams, and M. Hewison, Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB J, 2011. 25(3): p. 937-47. 229. Knowles, L.M., C. Yang, A. Osterman, and J.W. Smith, Inhibition of fatty-acid synthase induces caspase-8-mediated tumor cell apoptosis by up-regulating DDIT4. J Biol Chem, 2008. 283(46): p. 31378-84. 230. Ellisen, L.W., K.D. Ramsayer, C.M. Johannessen, A. Yang, H. Beppu, K. Minda, J.D. Oliner, F. McKeon, and D.A. Haber, REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell, 2002. 10(5): p. 995-1005. 231. Ellisen, L.W., Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle, 2005. 4(11): p. 1500-02. 232. Shoshani, T., A. Faerman, I. Mett, E. Zelin, T. Tenne, S. Gorodin, Y. Moshel, S. Elbaz, A. Budanov, A. Chajut, H. Kalinski, I. Kamer, A. Rozen, O. Mor, E. Keshet, D. Leshkowitz, P. Einat, R. Skaliter, and E. Feinstein, Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol, 2002. 22(7): p. 2283-93. 233. Pineau, P., S. Volinia, K. McJunkin, A. Marchio, C. Battiston, B. Terris, V. Mazzaferro, S.W. Lowe, C.M. Croce, and A. Dejean, miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A, 2010. 107(1): p. 264-9. 234. Billiard, J., R. Moran, M. Whitley, M. Chatterjee‐Kishore, K. Gillis, E. Brown, B. Komm, and P. Bodine, Transcriptional profiling of human osteoblast differentiation. Journal of cellular biochemistry, 2003. 89(2): p. 389-400. 235. Lian, J.B. and G.S. Stein, Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J, 1995. 15: p. 118-40.
摘要: The study has two main parts. The first part of the study explored the effect of Ocimum gratissimum aqueous extract on osteosarcoma. Osteosarcoma (OS) is a type of bone cancer. Eighty percent of this tumor is metastatic; it can be spread to the lungs or liver. To increase survival rate, patients with OS usually undergo chemotherapy, despite its side effects. Evidently, there is an urgent need for therapeutic drug for human osteosarcoma. Recently, Ocimum gratissimum aqueous extract (OGE) has been observed to have anti-tumor activity. The finding regarding its antioxidant properties has resulted in extensive research on therapeutic strategies. In the first part of the study, pharmacogenomics analyses were performed to explore the effect of OGE on human osteosarcoma U2-OS and HOS cell growth. Cell viability, western blot and flow cytometry analysis were performed before performing pharmacogenomics analyses for the effect of OGE on human osteosarcoma U2-OS and HOS cell growth, including cDNA microarray and RT-PCR assays. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of U2-OS and HOS cells. Increases in cell shrinkage, Sub-G1-fragments and the activation of caspase 3 indicated that OGE induced cell apoptosis in U2-OS and HOS cells. There was no change in human osteoblast hFOS cells. cDNA microarray assay demonstrated that the expression of cell cycle regulators, apoptosis-related factors and cell proliferation markers were all modified by OGE treatment. RT-PCR analysis also confirmed down-regulation of SKA2 and BUB1B, and up-regulation of PPP1R15A, SQSTM1, HSPA1B and DDIT4 by OGE treatment. The finding of anticancer activity in OGE and the identification of some potential target genes suggest that OGE is a promising therapeutic drug for human osteosarcoma. The second part of the study investigated the drug-controlled release of vancomycin/chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant. By means of electrochemical technology, the vancomycin–chitosan composite was originally deposited on Ti4Al4V through the hydrogen bonds and the deprotonation. The rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. Thus, to control the drug release, the post porous hydroxyapatite (HA) coated Ti4Al4V was prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite. It was observed that the initial burst was reduced to 55%. Then from day 1 to day 5, there was a steady release about 20%, and after day 6, there was a slower release of the retained 25%. It was also observed that a bacterial inhibition zone diameter of 30 mm could last for more than a month in antibacterial tests. This outperformed the coated specimen without HA, which gradually lost an inhibition zone after 21 days. Moreover, the cell culture suggested that the vancomycin–chitosan/HA composite coated had enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. The finding suggests that the investigated coating would benefit the osteointegration on permanent implants. The results of the rabbit infection animal model also indicated that the coating helped the pro-phylaxis and therapy of osteomyelitis.
本研究有兩個主要部分。第一部分探討七層塔萃取物對骨肉瘤的效果。骨肉瘤(Osteosarcoma; OS)是一種骨癌。這種腫瘤的百分之八十是有轉移性,它可以擴散到肺部或肝臟。為了提高生存率,儘管有副作用,骨肉瘤患者的通常需接受化療。由此可見,目前迫切需要更多對人骨肉瘤的治療藥物。近日,發現七層塔萃取物(Ocimumgratissimum aqueous extract; OGE )有抗腫瘤活性。由於它的抗氧化特性導致了對治療方法的廣泛研究 我們利用藥物基因分析來探討 OGE 對人骨肉瘤 U2- OS 和 HOS 細胞。生長的影響。細胞活力,西方墨點和流式細胞分析法進行了解 OGE 對人骨肉瘤的細胞活力,藥物基因組學分析則包括基因微陣列(cDNA microarray)和 RT-PCR 試驗。細胞活力檢測發現,OGE 顯著地降低 U2- OS 和 HOS 細胞的存活率,且有劑量依賴性。它會增加 U2-OS 和 HOS 細胞皺縮、sub-G1 片段和 caspase 3 的活化作用, 進而誘導細胞凋亡,但對於人成骨(human osteoblast hFOS) 細胞不影響。基因微陣列實驗結果顯示,細胞週期調控和細胞凋亡相關因子及細胞增殖標誌物的表達,都被 OGE 影響而修飾其表達。 RT-PCR 分析也證實 OGE 治療會調降 SKA2 和 BUB1B,並調昇 PPP1R15A、SQSTM1、HSPA1B 和 DDIT4 由。研究 OGE 抗癌活性發現一些潛在的靶基因,表明OGE 是一種對於治療人骨肉瘤很有前途的藥物。 第二部分研究了萬古黴素/幾丁聚醣(vancomycin/chitosan)複合沉積在 post poroushydroxyapatite (HA) coated Ti6Al4V 鍍層的藥物控制釋放。通過電化學沈積技術,將萬古黴素/幾丁聚醣複合物(vancomycin/chitosan)沈積在 Ti6Al4V 基材,在浸泡試驗中由於極性水分子對於氫鍵鍵結的快速破壞,顯示在幾個小時內,80 %的藥物已經崩解釋放出來。因此,為了控制藥物的釋放,將萬古黴素/幾丁聚醣複合物使用電化學沈積技術電解沉積於 post porous hydroxyapatite (HA) coated Ti6Al4V 來試驗,結果發現在一開始的萬古黴素藥物釋放量可以控制達到 55%,然後從第 1 天到第 5 天,有 20%左右的穩定釋放。到 6 天之後,有一個較慢的釋放最後的 25%。抑菌試驗發現,HA 的鍍層可以持續一個月以上 30mm 直徑的抑菌圈。這表現優於無 HA 的鍍層,因為無 HA的鍍層會在 21 天之後逐漸失去了抑菌圈。此外,細胞培養顯示 vancomycin-chitosan/HA複合鍍層增強的細胞增殖、細胞分化和成骨細胞礦化作用。我們的研究發現這樣的鍍層將有助於永久性植入物的骨整合。另外兔子骨髓炎動物模型的研究結果也明白顯示,該鍍層有助於骨髓炎的預防和治療。
其他識別: U0005-2306201516365400
文章公開時間: 10000-01-01
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.