Please use this identifier to cite or link to this item:
標題: 純鎂製骨釘/骨板於模擬體液之間隙腐蝕及其生成物對骨釘與骨板間抗拉強度影響之研究
Crevice corrosion at the interface of magnesium screw-plate fixation immersed in SBF and the effect of corrosion product on screw pullout strength
作者: 許孟賢
Meng-Hsien Hsu
關鍵字: 純鎂
pure magnesium
bone screw
pullout test
cells adhesion
cells attachment
cells proliferation
引用: [1] Y. Chen, Z. Xu, C. Smith, and J. Sankar, 'Recent advances on the development of magnesium alloys for biodegradable implants,' Acta Biomaterialia, vol. 10, pp. 4561-4573, 2014. [2] K. Pichler, S. Fischerauer, P. Ferlic, E. Martinelli, H.-P. Brezinsek, P. Uggowitzer, et al., 'Immunological Response to Biodegradable Magnesium Implants,' JOM, vol. 66, pp. 573-579, 2014. [3] R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, et al., 'Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial,' The Lancet, vol. 369, pp. 1869-1875, 2007. [4] S. S. Venkatraman, L. P. Tan, J. F. D. Joso, Y. C. F. Boey, and X. Wang, 'Biodegradable stents with elastic memory,' Biomaterials, vol. 27, pp. 1573-1578, 2006. [5] D. Mullan, D. Shepherd, and H.-U. Laasch, 'Percutaneous biodegradable stent insertion for a benign biliary stricture complicating choledochojejunostomy,' Gastrointestinal Intervention, 2015. [6] C. B. Chng, D. P. Lau, J. Q. Choo, and C. K. Chui, 'A bioabsorbable microclip for laryngeal microsurgery: Design and evaluation,' Acta Biomaterialia, vol. 8, pp. 2835-2844, 2012. [7] B. Qiao, J. Li, Q. Zhu, S. Guo, X. Qi, W. Li, et al., 'Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility,' International Journal of Nanomedicine, vol. 9, pp. 1423-1432, 2014. [8] R. Suuronen, T. Pohjonen, L. Wessman, P. Törmälä, and S. Vainionpää, 'New generation biodegradable plate for fracture fixation: Comparison of bending strengths of mandibular osteotomies fixed with absorbable self-reinforced multi-layer poly-l-lactide plates and metallic plates — an experimental study in sheep,' Clinical Materials, vol. 9, pp. 77-84, 1992. [9] S. Y. Cho, S.-W. Chae, K. W. Choi, H. K. Seok, Y. C. Kim, J. Y. Jung, et al., 'Biocompatibility and strength retention of biodegradable Mg-Ca-Zn alloy bone implants,' Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 101B, pp. 201-212, 2013. [10] N. Erdmann, N. Angrisani, J. Reifenrath, A. Lucas, F. Thorey, D. Bormann, et al., 'Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits,' Acta Biomaterialia, vol. 7, pp. 1421-1428, 2011. [11] L. E. Claes, A. A. Ignatius, K. E. Rehm, and C. Scholz, 'New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation,' Biomaterials, vol. 17, pp. 1621-1626, 1996. [12] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, 'Magnesium and its alloys as orthopedic biomaterials: A review,' Biomaterials, vol. 27, pp. 1728-1734, 2006. [13] M. Razavi, M. Fathi, O. Savabi, B. Hashemi Beni, D. Vashaee, and L. Tayebi, 'Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications,' Colloids and Surfaces B: Biointerfaces, vol. 117, pp. 432-440, 2014. [14] M. Razavi, M. Fathi, O. Savabi, B. H. Beni, S. M. Razavi, D. Vashaee, et al., 'Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6),' Applied Surface Science, vol. 288, pp. 130-137, 2014. [15] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, and L. Tayebi, 'Micro-arc oxidation and electrophoretic deposition of nano-grain merwinite (Ca3MgSi2O8) surface coating on magnesium alloy as biodegradable metallic implant,' Surface and Interface Analysis, vol. 46, pp. 387-392, 2014. [16] J. Wang, F. Witte, T. Xi, Y. Zheng, K. Yang, Y. Yang, et al., 'Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials,' Acta Biomaterialia, 2015. [17] Y. Zhao, M. I. Jamesh, W. K. Li, G. Wu, C. Wang, Y. Zheng, et al., 'Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys,' Acta Biomaterialia, vol. 10, pp. 544-556, 2014. [18] Y. Wan, G. Xiong, H. Luo, F. He, Y. Huang, and X. Zhou, 'Preparation and characterization of a new biomedical magnesium–calcium alloy,' Materials & Design, vol. 29, pp. 2034-2037, 2008. [19] M. Schinhammer, A. C. Hänzi, J. F. Löffler, and P. J. Uggowitzer, 'Design strategy for biodegradable Fe-based alloys for medical applications,' Acta Biomaterialia, vol. 6, pp. 1705-1713, 2010. [20] C. Wu, H. Qiu, X.-Y. Hu, Y.-M. Ruan, Y. Tian, Y. Chu, et al., 'Short-term safety and efficacy of the biodegradable iron stent in mini-swine coronary arteries,' Chinese medical journal, vol. 126, pp. 4752-4757, 2013. [21] A. Purnama, H. Hermawan, S. Champetier, D. Mantovani, and J. Couet, 'Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents,' Acta Biomaterialia, vol. 9, pp. 8746-8753, 2013. [22] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg, 'Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta,' Biomaterials, vol. 27, pp. 4955-4962, 2006. [23] J. Cheng, T. Huang, and Y. F. Zheng, 'Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays,' Materials Science and Engineering: C, vol. 48, pp. 679-687, 2015. [24] M. Yu, C. George, Y. Cao, D. Wootton, and J. Zhou, 'Microstructure, corrosion, and mechanical properties of compression-molded zinc-nanodiamond composites,' Journal of Materials Science, vol. 49, pp. 3629-3641, 2014. [25] D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák, 'Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation,' Acta Biomaterialia, vol. 7, pp. 3515-3522, 2011. [26] A. Yamamoto, R. Honma, and M. Sumita, 'Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells,' Journal of Biomedical Materials Research, vol. 39, pp. 331-340, 1998. [27] N. J. Hallab, C. Vermes, C. Messina, K. A. Roebuck, T. T. Glant, and J. J. Jacobs, 'Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts,' Journal of Biomedical Materials Research, vol. 60, pp. 420-433, 2002. [28] Y. V. Pathak and J. N. Lokhande, 'Handbook of Metallonutraceuticals,' ed: CRC Press, p.58, 2014. [29] M. D. Grynpas, E. Hamilton, R. Cheung, Y. Tsouderos, P. Deloffre, M. Hott, et al., 'Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect,' Bone, vol. 18, pp. 253-259, 1996. [30] D. Pierson, J. Edick, A. Tauscher, E. Pokorney, P. Bowen, J. Gelbaugh, et al., 'A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials,' Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 100B, pp. 58-67, 2012. [31] P. K. Bowen, J. Drelich, R. E. Buxbaum, R. M. Rajachar, and J. Goldman, 'New approaches in evaluating metallic candidates for bioabsorbable stents,' Emer Mater Res, vol. 1, pp. 237-255, 2012. [32] A. Ghosh and A. K. Mallik, 'Manufacturing science,' Ellis Horwood', p.455, 1986. [33] J. F. Shackelford and W. Alexander, CRC materials science and engineering handbook, p.70, 2000. [34] N. T. Kirkland, J. Lespagnol, N. Birbilis, and M. P. Staiger, 'A survey of bio-corrosion rates of magnesium alloys,' Corrosion Science, vol. 52, pp. 287-291, 2010. [35] T. Kokubo and H. Takadama, 'How useful is SBF in predicting in vivo bone bioactivity?,' Biomaterials, vol. 27, pp. 2907-2915, 2006. [36] J. Vormann, 'Magnesium: nutrition and metabolism,' Molecular Aspects of Medicine, vol. 24, pp. 27-37, 2003. [37] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, et al., 'In vivo corrosion of four magnesium alloys and the associated bone response,' Biomaterials, vol. 26, pp. 3557-3563, 2005. [38] C. McCord, J. Prendergast, S. Meek, and G. Harrold, 'Chemical gas gangrene from metallic magnesium,' Industrial Medicine, vol. 11, pp. 71-75, 1942. [39] J.-K. Lin, J.-Y. Uan, C.-P. Wu, and H.-H. Huang, 'Direct growth of oriented Mg–Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples,' Journal of Materials Chemistry, vol. 21, pp. 5011-5020, 2011. [40] C. Lorenz, J. G. Brunner, P. Kollmannsberger, L. Jaafar, B. Fabry, and S. Virtanen, 'Effect of surface pre-treatments on biocompatibility of magnesium,' Acta Biomaterialia, vol. 5, pp. 2783-2789, 2009. [41] D. Zhao, S. Huang, L. Qin, Y. Li, B. Wang, 'The application of biodegradable magnesium screw in hip surgery,' European Cells and Materials vol. 28, p.74, 2014. [42] G. Song and S. Song, 'A possible biodegradable magnesium implant material,' Advanced Engineering Materials, vol. 9, pp. 298-302, 2007. [43] S. Zhang, Biological and Biomedical Coatings Handbook: Applications: CRC Press, p.271, 2011. [44] P.-Y. Koh, J. Yan, and A. Teja, 'Precipitation and growth of magnesium hydroxide nanopetals on zeolite 4A surfaces,' Journal of Crystal Growth, vol. 331, pp. 56-63, 2011. [45] D. R. Lide, CRC handbook of chemistry and physics: CRC press, p.4-152, 2004.
摘要: This study investigated crevice corrosion behavior in the gap of pure magnesium bone-screw fixation system effects on screw-plate pullout strength. Casting pure magnesium undergoes grains refined process to improve its mechanical properties. Then put on lathe cutting to cut into screw-plate system tensile specimen. Fix the screw-plate fixation system in simulated body fluid (SBF) and maintain in 37 ºC. Took out the immersed specimens after different immersion time and undergo tensile test. After tensile test, mounted the specimen in epoxy and ground it until the cross section of screw-plate fixation. Analyzed its fracture cross section by SEM-BEI signal, this study founds all specimen breaks at screw head, even specimens after 30 weeks immersion in SBF did not stripped. This indicates screw thread after corroded still retained enough strength for screw-plate interlocking. Analyze the corroded thread by EDS founds the corrosion product is Mg(OH)2. Calculate from density and molar mass of Mg and Mg(OH)2, showing it will expand 1.76 times when Mg turns into Mg(OH)2. Suppose the corroded thread retain enough strength is contributed by the expansion of corrosion product. To prove this supposition, another experiment was done; cut pure magnesium by lathe cutting to create a pin without thread and plate also without thread. Combine pin-plate specimen in SBF then test its tensile strength with different immersion time. This test proves corrosion product do produce holding strength by expansion. It also proves holding strength of biodegradable screw-plate fixation system made by pure magnesium will not be weaken by corrode. Switch Mg plate specimen into S316L Stainless steel to simulate human bone, what do not corroded in human body, to test will the corrosion product still produce same holding strength if only one side corroded. The result shows corrosion product of pure magnesium not only enhance the screw-plate fixation strength, but also enhance screw-bone inter locking strength. To study the effects of sells behavior on corrosion products, plane specimens were used to immerse in SBF with different time, then analyzed their composition and cells attachment, proliferation and cytotoxicity. Finding corrosion product is not only Mg(OH)2, but also some Ca, P-rich oxides and hydroxides on surface of corrosion products. For cells test, this study found corrosion products on specimens with 0~48 hours immersion time are benefit for cells to grow and adhesion. But specimens with longer immersion time show cytotoxic and decrease of attached cells number. This predicted to be longer immersion time creates thicker Mg(OH)2 film, and Mg(OH)2 will dissolve into culture medium making solution abundant of OH and become too base for cells to survive. However, during 0~48 hours immersion test show corrosion products do help pure magnesium to have better biocompatibility as being a biodegradable implants.
本研究探討間隙腐蝕行為對高純度純鎂製備之骨釘與骨板間螺紋鎖合處之影響。將鑄態之高純度純鎂經由旋鍛加工過後之晶粒細化試棒製備成骨釘與骨板互鎖式拉伸試棒,浸置於模擬體液中並持溫37 oC,隨不同時間取出後進行拉伸測試。再將拉伸測試過後之試片鑲埋於樹脂中,研磨至螺紋橫截面處後觀察骨釘與骨板間的斷裂模式,可發現各浸泡時間之斷裂處均在螺帽與螺牙交接處,其螺牙無滑牙之情形,可見螺牙處於腐蝕後仍保有相當強度的互鎖能力。並藉由熱游離電子顯微鏡之EDS成分分析儀去分析其螺牙間隙,得知其腐蝕產物為氫氧化鎂;經由計算後得知純鎂反應生成氫氧化鎂之體積將會膨脹1.76倍,推測拉伸測試時,已遭腐蝕之螺牙仍保有強度,乃腐蝕生成物之膨脹貢獻所致。為證實此推測,再以純鎂製備無螺紋骨釘與骨板試片浸置於模擬體液中,測試其因腐蝕生成物貢獻所得之強度隨時間之變化,實驗後得知腐蝕生成物確實會因膨脹而產生固定強度。藉此證明使用純鎂製備生物可降解骨釘、骨板,其相互鎖合強度並不會因螺牙腐蝕而變弱。再以S316L不鏽鋼製備無螺紋骨板拉伸試棒與無螺紋純鎂骨釘接合後浸置於模擬體液中,藉此模擬生物可降解骨釘於人骨內單側腐蝕之情形,得知其腐蝕後之腐蝕生成物如雙側腐蝕般皆可給予相當強度之抗拉強度貢獻。證實純鎂製備之生物可降解骨釘植入人骨內降解時,其腐蝕生成物氫氧化鎂因膨脹而與密質骨之間鎖合力道不至下降。再將純鎂製備片狀試片浸置於模擬體液中,去分析其腐蝕生成物隨時間之變化,其腐蝕生成物除了氫氧化鎂以外,亦發現鈣、磷之氧化物與氫氧化物分布於腐蝕生成物表層,推測為表層氫氧化鎂溶於模擬體液中,而殘存的鈣磷氧化物與氫氧化物累積形成其富鈣磷表層。於細胞毒性、貼附與增生實驗中得知純鎂浸置於模擬體液中0~48小時後,其腐蝕生成物確實能幫助細胞貼附於純鎂試片,也能幫助細胞增生,且無毒性反應;然而較長浸泡時間卻不利細胞貼附與增生,更是顯現出細胞毒性反應;估計為較厚的氫氧化鎂層於模擬體液中溶解釋出之氫氧根較多,而細胞實驗中之培養基為有限之溶液,而非如體內般恆定循環,因此而使水溶液過鹼而導致細胞死亡。然而,藉由0~48小時之細胞實驗可知腐蝕生成物於植入初期確實是可以幫助純鎂生物可降解骨釘、骨板有較佳的生物親和性。
其他識別: U0005-2408201513122800
文章公開時間: 2018-08-25
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.