Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91931
標題: 還原奈米白金顆粒於含鐵氫氧基磷灰石多孔微米球應用於燃料電池觸媒
Nano-sized Pt particles reduced on iron contained hydroxyapatite porous microspheres as catalysts for fuel cells
作者: 白乃夙
Nai-Su Pai
關鍵字: 質子交換膜燃料電池
直接甲醇燃料電池
氧氣還原反應
含鐵磷酸鈣鹽
白金觸媒
PEMFC
DMFC
oxygen reduction reaction (ORR)
iron contented hydroxyapatite
platinum catalysts
引用: 1. S.F. Hulbert, J.C.B., L.L. Hench, J. Wilson and G. Heimke,, Ceramics in clinical applications: past, present and future. High Tech Ceramics, 1987. Amsterdam, The Netherlands: p. pp. 189 –213 2. Hench, L.L., Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510. 3. Michael S Armstrong, R.F.S., James L Cunningham, Sabina Gheduzzi, and A.W.M.a.I.D. Learmonth, Mechanical characteristics of antibiotic-laden bone cement. Acta Orthop Scand, 2002. 73: p. 688-690. 4. Joosten, U., A. Joist, T. Frebel, B. Brandt, S. Diederichs and C. von Eiff, Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: Studies in vitro and in vivo. Biomaterials, 2004. 25(18): p. 4287-4295. 5. Boukha, Z., M. Kacimi, M.F.R. Pereira, J.L. Faria, J.L. Figueiredo and M. Ziyad, Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Applied Catalysis A: General, 2007. 317(2): p. 299-309. 6. Dominguez, M.I., F. Romero-Sarria, M.A. Centeno and J.A. Odriozola, Gold/hydroxyapatite catalysts: Synthesis, characterization and catalytic activity to CO oxidation. Applied Catalysis B: Environmental, 2009. 87(3-4): p. 245-251. 7. Hughes, J.M., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates By J. C. Elliot (The London Hospital Medical College). Elsevier:  Amsterdam. 1994. xii + 389 pp. ISBN 0-444-81582-1. Journal of the American Chemical Society, 1996. 118(12): p. 3072-3072. 8. Venugopal, A. and M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts: Behaviour in the water gas shift reaction. Applied Catalysis A: General, 2003. 245(1): p. 137-147. 9. Kousalya, G.N., M. Rajiv Gandhi, C. Sairam Sundaram and S. Meenakshi, Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III). Carbohydrate Polymers, 2010. 82(3): p. 594-599. 10. Khachani, M., M. Kacimi, A. Ensuque, J.-Y. Piquemal, C. Connan, F. Bozon-Verduraz and M. Ziyad, Iron-calcium-hydroxyapatite catalysts: Iron speciation and comparative performances in butan-2-ol conversion and propane oxidative dehydrogenation. Applied Catalysis A: General, 2010. 388(1-2): p. 113-123. 11. Hsieh, C.-T., J.-Y. Lin and J.-L. Wei, Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes. International Journal of Hydrogen Energy, 2009. 34(2): p. 685-693. 12. Li, W., Q. Xin and Y. Yan, Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: The effect of catalyst composition. International Journal of Hydrogen Energy, 2010. 35(6): p. 2530-2538. 13. Amin, R.S., R.M. Abdel Hameed, K.M. El-Khatib, H. El-Abd and E.R. Souaya, Effect of preparation conditions on the performance of nano Pt‒CuO/C electrocatalysts for methanol electro-oxidation. International Journal of Hydrogen Energy, 2012. 37(24): p. 18870-18881. 14. Xia, X.H., T. Iwasita, F. Ge and W. Vielstich, Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochimica Acta, 1996. 41(5): p. 711-718. 15. Wei, Z.D. and S.H. Chan, Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. Journal of Electroanalytical Chemistry, 2004. 569(1): p. 23-33. 16. Herrero, E., K. Franaszczuk and A. Wieckowski, Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study. The Journal of Physical Chemistry, 1994. 98(19): p. 5074-5083. 17. Housmans, T.H.M., A.H. Wonders and M.T.M. Koper, Structure Sensitivity of Methanol Electrooxidation Pathways on Platinum:  An On-Line Electrochemical Mass Spectrometry Study. The Journal of Physical Chemistry B, 2006. 110(20): p. 10021-10031. 18. Nakamura, M., K. Shibutani and N. Hoshi, In-situ Flow-Cell IRAS Observation of Intermediates during Methanol Oxidation on Low-Index Platinum Surfaces. ChemPhysChem, 2007. 8(12): p. 1846-1849. 19. Markovica, N.M., S.T. Sarraf, H.A. Gasteiger and P.N. Ross, Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. Journal of the Chemical Society, Faraday Transactions, 1996. 92(20): p. 3719-3725. 20. Marković, N.M., B.N. Grgur and P.N. Ross, Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. The Journal of Physical Chemistry B, 1997. 101(27): p. 5405-5413. 21. Markovic, N.M., H.A. Gasteiger and P.N. Ross, Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Sulfuric Acid Solution: Rotating Ring-Pt(hkl) Disk Studies. The Journal of Physical Chemistry, 1995. 99(11): p. 3411-3415. 22. Grgur, B.N., N.M. Marković and P.N. Ross, Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions. Canadian Journal of Chemistry, 1997. 75(11): p. 1465-1471. 23. Markovic, N., H. Gasteiger and P.N. Ross, Kinetics of Oxygen Reduction on Pt(hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts. Journal of The Electrochemical Society, 1997. 144(5): p. 1591-1597. 24. Pozio, A., M. De Francesco, A. Cemmi, F. Cardellini and L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002. 105(1): p. 13-19. 25. Prabhuram, J., T.S. Zhao, Z.K. Tang, R. Chen and Z.X. Liang, Multiwalled Carbon Nanotube Supported PtRu for the Anode of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 2006. 110(11): p. 5245-5252. 26. Nores-Pondal, F.J., I.M.J. Vilella, H. Troiani, M. Granada, S.R. de Miguel, O.A. Scelza and H.R. Corti, Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods. International Journal of Hydrogen Energy, 2009. 34(19): p. 8193-8203. 27. Otsuka, K. and Y. Wang, Direct conversion of methane into oxygenates. Applied Catalysis A: General, 2001. 222(1-2): p. 145-161. 28. Ai, M., Oxidation activity of iron phosphate and its characters. Catalysis Today, 2003. 85(2-4): p. 193-198. 29. Otsuka, K., I. Yamanaka and Y. Wang, Reductive activation of oxygen for partial oxidation of light alkanes, in Studies in Surface Science and Catalysis, D.S.F.F.A.V. A. Parmaliana and A. F, Editors. 1998, Elsevier. p. 15-24. 30. H.C. Liu, W.H. Ho, C.F. Li and S.K. Yen, Electrochemical Synthesis of FePO4 for Anodes in Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2008. 155 (12): p. E178-E182. 31. Bouwman, P.J., W. Dmowski, J. Stanley, G.B. Cotten and K.E. Swider-Lyons, Platinum-Iron Phosphate Electrocatalysts for Oxygen Reduction in PEMFCs. Journal of The Electrochemical Society, 2004. 151(12): p. A1989-A1998. 32. Byungjoo Lee, C.K., Yejun Park, and a.B.P. Tae-Gon Kim, Nanostructured Platinum/Iron Phosphate Thin-Film Electrodes for Methanol Oxidation. Electrochemical and Solid-State Letters, 2006. 9: p. E27-E30. 33. Chunjoong Kim, B.L., Yejun Park, and Byungwoo Park, Iron-phosphate/platinum/carbon nanocomposites for enhanced electrocatalytic stability. APPLIED PHYSICS LETTERS 2007. 91 p. 113101 -113103. 34. Park, Y., B. Lee, C. Kim, J. Kim and B. Park, Effects of iron-phosphate coating on Ru dissolution in the PtRu thin-film electrodes. Journal of Materials Research, 2009. 24(01): p. 140-144. 35. Li, W., W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun and Q. Xin, Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta, 2004. 49(7): p. 1045-1055. 36. Shao, Y., G. Yin, J. Wang, Y. Gao and P. Shi, Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. Journal of Power Sources, 2006. 161(1): p. 47-53. 37. Toda, T., H. Igarashi and M. Watanabe, Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. Journal of Electroanalytical Chemistry, 1999. 460(1-2): p. 258-262. 38. A. B. LaConti, M.H., and R. C. McDonald, Handbook of Fuel Cells— Fundamentals Technology and Applications. Vielstich, H. Gasteiger, and A. Lamm, Editors, John Wiley & Sons, London. 2003. Vol. 2. 39. Pozio, A., R.F. Silva, M. De Francesco and L. Giorgi, Nafion degradation in PEFCs from end plate iron contamination. Electrochimica Acta, 2003. 48(11): p. 1543-1549. 40. S. K. Yen and M. J. Wang, Method for Preparing Hydroxyapatite-Gelatin Microspheres, 2010: Taiwan. 41. Zhou, W., W. He, M. Wang, X. Zhang, P. Li, S. Yan, X. Tian, X. Sun and X. Han, Biosynthesis and characterization of layered iron phosphate. Smart Materials and Structures, 2008. 17(6): p. 065034. 42. Pozio, A., M. D. Francesco, A. Cemmi, F. Cardellini and L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 2002. 105(1): p. 13-19. 43. Vidakovic, T., M. Christov and K. Sundmacher, The use of CO stripping for in situ fuel cell catalyst characterization. Electrochimica Acta, 2007. 52(18): p. 5606-5613. 44. Ou, Y., X. Cui, X. Zhang and Z. Jiang, Titanium carbide nanoparticles supported Pt catalysts for methanol electrooxidation in acidic media. Journal of Power Sources, 2010. 195(5): p. 1365-1369. 45. Paulus, U.A., T.J. Schmidt, H.A. Gasteiger and R.J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. Journal of Electroanalytical Chemistry, 2001. 495(2): p. 134-145. 46. Gojković, S.L., S.K. Zečević and R.F. Savinell,  O 2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons. Journal of The Electrochemical Society, 1998. 145(11): p. 3713-3720. 47. Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications2008: Springer. p. 100-101. 48. Kinoshita, K., Carbon: electrochemical and physicochemical properties. Other Information: From review by T. Apple, Univ. of Nebraska, in Journal of the American Chemical Society, Vol. 110, No. 18 (31 Aug 1988)1988. Medium: X; Size: Pages: 541. 49. SING, K.S.W., REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS. Pure & Appl.Chem, 1982. 54(11). 50. Yamashita, T. and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449. 51. Paal, Z., P. Tetenyi, D. Prigge, X.Z. Wang and G. Ertl, Study of morphology and composition of Pt-black catalysts III. XPS study of Pt-black. Applications of Surface Science, 1983. 14(3-4): p. 307-320. 52. Stamenkovic, V.R., B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas and N.M. Marković, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science, 2007. 315(5811): p. 493-497. 53. Stamenkovic, V.R., B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross and N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater, 2007. 6(3): p. 241-247. 54. Lim, B., M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu and Y. Xia, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science, 2009. 324(5932): p. 1302-1305. 55. Radovic-Hrapovic, Z. and G. Jerkiewicz, The temperature dependence of the cyclic-voltammetry response for the Pt(110) electrode in aqueous H2SO4 solution. Journal of Electroanalytical Chemistry, 2001. 499(1): p. 61-66. 56. Koczkur, K., Q. Yi and A. Chen, Nanoporous Pt-Ru Networks and Their Electrocatalytical Properties. Advanced Materials, 2007. 19(18): p. 2648-2652. 57. Maiyalagan, T. and B. Viswanathan, Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. Journal of Power Sources, 2008. 175(2): p. 789-793. 58. Justin, P. and G. Ranga Rao, Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. International Journal of Hydrogen Energy, 2011. 36(10): p. 5875-5884. 59. Perez-Alonso, F.J., D.N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I.E.L. Stephens, J.H. Nielsen and I. Chorkendorff, The Effect of Size on the Oxygen Electroreduction Activity of Mass-Selected Platinum Nanoparticles. Angewandte Chemie International Edition, 2012. 51(19): p. 4641-4643. 60. Tritsaris, G.A., J. Greeley, J. Rossmeisl and J.K. Norskov, Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt. Catalysis Letters, 2011. 141(7): p. 909-913.
摘要: Proton-exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC) are electrochemical conversion devices that can produce electricity at high fuel efficiencies, and Pt the excellent and major catalyst in them, is too expensive to be developed for a commercial applications widely. Before the fuel cells become practical for wide-scale consumer use, two technological problems must be solved. 1. the activity of electrodes must be improved to increase efficiency, then the amount of platinum catalyst in electrodes could be lowered to reduce the cost of devices. 2. poisoning effects of CO on Pt catalysts should be removed. In recent years, Hydroxyapatite (HAp), Ca10(PO4)6(OH)2, the major component in human hard tissue been applied to orthopedic and dental bioceramics, has also become a new support of heavy metal ions for a novel catalyst and presented the superior chemical and thermal stability by using ion exchange, such as iron contained hydroxyapatite. The voltammograms of hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR) in acid solutions depending on three low-index planes of Pt are investigated in recent years. The result indicate that Pt (1 1 0) facet is more active than (1 1 1) and (1 0 0) ones. Therefore, how to prepare nano-sized Pt with (1 1 0) facet becomes a very important issue in this field. In this study, the porous HAp microspheres prepared by wet-chemical method with diameter around 25 μm are partially exchanged with ferrous ions to form iron contained hydroxyapatite (FeHAp) on which Pt ions in H2PtCl6 solution are reduced to form Pt/FeHAp catalyst and finally mixed with carbon blacks to derive Pt/FeHAp/C catalysts. The particle size of Pt supported on FeHAp (Pt/FeHAp) is around 3.2 nm. They exhibit the characteristics of Pt (1 1 0) facet with a sharp desorption peak at -0.109 V (vs. Ag/AgCl), the electrochemical surface area (ECSA) ranging from 73 to 224 m2 g-1 with little CO poisoning effect on Pt, and the mass activity ranging from 6.88 to 28.99 A gPt-1 in methanol oxidation reaction (MOR) at 0.4 V (vs. Ag/AgCl). Besides, Pt/FeHAp reveals the lower onset potential in CO stripping than Pt/C. In ORR, the Pt/FeHAp/C catalysts also reveal the characteristics of Pt (1 1 0) facet with little hydrogen peroxide in the oxygen activity reaction, the Tafel slopes ranging from -68 to -240 mV dec-1. Besides, Pt/FeHAp reveals the higher onset potential in ORR than Pt/C. These better performances of Pt/FeHAp/C catalysts in HOR, MOR and ORR, compared with Pt/C, are related to the Pt (1 1 0) facet, the content of Fe, and the coexistence of Pt0 and Pt2+ in Pt/FeHAp. Besides, a model with computer motion picture simulation depicting why Pt (1 1 0) facet could be coherent on FeHAp (2 1 10) is also presented to rationalize the electrochemical characteristics of cyclic voltammetry.
質子交換膜燃料電池(proton exchange membrane fuel cells, PEMFC)與直接甲醇燃料電池(direct methanol fuel cells, DMFC)係高效能地將燃料直接轉換成電能的裝置,所用的電極觸媒主要以白金為活性成分,因為白金具有優越的化學催化性與穩定性因此常做為膜電極觸媒,但因白金成本太高以至於無法普及化。在廣泛使用前,有兩個技術性問題必須克服:1.電化學活性必須大幅提昇以減少白金使用量,降低產品成本;2.一氧化碳毒化白金的現象必須排除。 氫氧基磷灰石(Hydroxyapatite, HAp)是人體硬組織的主要組成,已應用於骨科和牙科生物陶瓷, HAp也可應用於金屬離子交換,形成新穎的觸媒例如含鐵(Fe(III))氫氧基磷灰石,此類型觸媒具有優越的化學穩定性與熱安定性,並且可提升其觸媒效應。另一方面文獻指出在白金的主要三個低指數晶面(low-index plane)中,針對酸性溶液中的產氫反應(hydrogen evolution reaction, HER)、氫氣氧化反應(hydrogen oxidation reaction, HOR),及氧氣還原反應(oxygen reduction reaction, ORR)皆以Pt(1 1 0)晶面表現出最高的活性。因此如何開發奈米級Pt(1 1 0)薄膜,以降低白金用量,發揮白金最大效應,將成為此領域中一項熱門議題。 本研究利用濕式合成法製備大小約為25 μm的磷酸鈣鹽微米球,利用鐵離子交換法後得到含鐵氫氧基磷灰石(FeHAp)作為觸媒載體,並將奈米白金(Pt)還原於其上形成Pt / FeHAp,再與碳黑(C)混合,得到Pt / FeHAp / C,其白金顆粒大小平均為3.2 nm。循環伏安圖(Cyclic Voltammetry)顯示其氫氣脫附反應峯在-0.109 V (vs. Ag/AgCl)係Pt (1 1 0)晶面之特性反應峯,其電化學活性表面積為73 - 224 m2 g-1;在甲醇氧化反應(methanol oxidation reaction, MOR),其質量活性為6.88 - 28.99 A gPt-1,(0.4 V vs. Ag/AgCl)且無CO毒化現象,同時Pt/FeHAp/C具有較低的起始電位。在氧氣還原反應中,Pt/FeHAp/C也呈現出Pt(1 1 0)晶面的特徵;比商用觸媒(Pt/C)產生較少的雙氧水,其塔佛斜率(Tafel slopes)為 -68 至 -240 mV dec-1,除此之外Pt/FeHAp/C也具有較高的起始電位。Pt/ FeHAp/ C與商用觸媒(Pt / C)相較之下,無論在HOR, MOR, 或ORR均具有較好的表現,這些優異的性能應與Pt/ FeHAp當中的Pt(1 1 0)晶面表現、鐵的含量,以及白金價數(Pt0, Pt2+)相關聯。同時利用電腦動畫模擬描述還原的奈米Pt薄膜為何能以(1 1 0)晶面與FeHAp(2 1 10)晶面契合,合理解釋循環伏安法的電化學性能具Pt(1 1 0)晶面的特殊表現。
URI: http://hdl.handle.net/11455/91931
其他識別: U0005-1001201416523900
文章公開時間: 2017-01-15
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.