Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91939
標題: 鋁-鎂/鋁-鎂-矽合金經橫錯軋延製程及熱處理後抗拉強度、顯微組織及織構的變化
Tensile strength, deformation microstructure and texture evolution of Al-Mg-(Si) alloy sheets by through-width vibration rolling process.
作者: 陳岳廷
Yue-Ting Chen
關鍵字: 鋁合金
大量塑性變型
熱處理
軋延
時效處理
退火處理
織構
Aluminum alloys
Severe plastic deformation
Thermomechanical processing
Rolling
Ageing
Annealing
Texture
引用: [1] Cole, G.S.; Sherman, A.M., Light weight materials for automotive applications. Materials Characterization 1995, 35, 3-9. [2] Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A., Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A 2000, 280, 37-49. [3] Sears, K., Automotive engineering strategic overview. Steel World 1997, 2, 55-68. [4] Hirsch, J.; Bassan, D.; Lahaye, C.; Goede, M., Aluminium in innovative light-weight car design. Materials transactions 2011, 52, 818-824. [5] Yang, R.J.; Wang, B.P.; Wang, N.; Tho, C.H.; Bobineau, J.P., Metamodeling development for vehicle frontal impact simulation. Journal of Mechanical Design 2005, 127, 1014-1020. [6] Belingardi, G.; Obradović, J., Recent development in car body lightweight design: A contribution toward greener environment. Mobility & Vehicle Mechanics 2012, 38. [7] Yildiz, A.; Solanki, K., Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 2012, 59, 367-376. [8] Segal, V.M., Deformation mode and plastic flow in ultra fine grained metals. Materials Science and Engineering: A 2005, 406, 205-216. [9] Langdon, T.; Furukawa, M.; Nemoto, M.; Horita, Z., Using equal-channel angular pressing for refining grain size. JOM Journal of the Minerals, Metals and Materials Society 2000, 52, 30-33. [10] Tsuji, N.; Saito, Y.; Lee, S.H.; Minamino, Y., Arb (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Advanced Engineering Materials 2003, 5, 338-344. [11] Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D.Y.; Micari, F.; Lahoti, G.D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A., et al., Severe plastic deformation (spd) processes for metals. CIRP Annals - Manufacturing Technology 2008, 57, 716-735. [12] Valiev, R.Z.; Krasilnikov, N.A.; Tsenev, N.K., Plastic deformation of alloys with submicron-grained structure. Materials Science and Engineering: A 1991, 137, 35-40. [13] Saito, Y.; Tsuji, N.; Utsunomiya, H.; Sakai, T.; Hong, R.G., Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (arb) process. Scripta Materialia 1998, 39, 1221-1227. [14] Huang, J.; Zhu, Y.T.; Alexander, D.J.; Liao, X.; Lowe, T.C.; Asaro, R.J., Development of repetitive corrugation and straightening. Materials Science and Engineering: A 2004, 371, 35-39. [15] Sakai, G.; Horita, Z.; Langdon, T.G., Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Materials Science and Engineering: A 2005, 393, 344-351. [16] W.J. Kim, J.Y. Wang, S.O. Choi, H.J. Choi, H.T. Sohn, Materials Science and Engineering: A, 520 (2009) 23-28. [17] W.J. Kim, J.D. Park, W.Y. Kim, Journal of Alloys and Compounds, 460 (2008) 289-293. [18] W.J. Kim, S.J. Yoo, H.T. Jeong, D.M. Kim, B.H. Choe, J.B. Lee, Scripta Materialia, 64 (2011) 49-52. [19] Edalati, K.; Horita, Z., Continuous high-pressure torsion. Journal of materials science 2010, 45, 4578-4582. [20] Pippan, R.; Scheriau, S.; Hohenwarter, A.; Hafok, M. In Advantages and limitations of hpt: A review, Materials Science Forum, 2008; Trans Tech Publ: pp 16-21. [21] Dehghani, K.; Nekahi, A.; Mirzaie, M.A.M., Using response surface methodology to optimize the strain aging response of aa5052. Materials Science and Engineering: A 2010, 527, 7442-7451. [22] Rollett, A.; Humphreys, F.; Rohrer, G.S.; Hatherly, M., Recrystallization and related annealing phenomena. Elsevier: 2004. [23] Randle, V.; Engler, O., Introduction to texture analysis: Macrotexture, microtexture and orientation mapping. Gordon & breach science publishers. Reading, UK 2000. [24] Akef, A. and J. H. Driver (1991). 'Orientation splitting of cube-oriented face-centred cubic crystals in plane strain compression.' Materials Science and Engineering: A 132(0): 245-255. [25] Hirsch, J.; Al-Samman, T., Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia 2013, 61, 818-843. [26] Vatne, H. E., et al. (1996). 'Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy.' Acta Materialia 44(11): 4447-4462. [27] Liu, W.C.; Man, C.S.; Raabe, D.; Morris, J.G., Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy. Scripta Materialia 2005, 53, 1273-1277. [28] Dalland, O. and E. Nes (1996). 'Origin of cube texture during hot rolling of commercial Al-Mn-Mg alloys.' Acta Materialia 44(4): 1389-1411. [29] Engler, O.; Hirsch, J., Texture control by thermomechanical processing of aa6xxx al–mg–si sheet alloys for automotive applications—a review. Materials Science and Engineering: A 2002, 336, 249-262. [30] Wenk, H.; Van Houtte, P., Texture and anisotropy. Reports on Progress in Physics 2004, 67, 1367., p7~p11. [31] El-Madhoun, Y.; Mohamed, A.; Bassim, M.N., Cyclic stress–strain response and dislocation structures in polycrystalline aluminum. Materials Science and Engineering: A 2003, 359, 220-227. [32] Wang, J.-S.; Hsieh, C.-C.; Lin, C.-M.; Kuo, C.-W.; Wu, W., Texture evolution and residual stress relaxation in a cold-rolled al-mg-si-cu alloy using vibratory stress relief technique. Metallurgical and Materials Transactions A 2013, 44, 806-818. [33] Engler, O.; Lochte, L.; Hirsch, J., Through-process simulation of texture and properties during the thermomechanical processing of aluminium sheets. Acta Materialia 2007, 55, 5449-5463. [34] Norestad, L.; Oscarsson, A.; Hutchinson, B., Experimental evidence supporting the dillamore - katoh mechanism for development of the cube texture. Scripta Metallurgica 1987, 21, 491-494. [35] Zhao, Y.M.; Liu, W.C.; Morris, J.G., Quantitative analysis of texture evolution of cold-rolled direct-chill-cast and continuous-cast aa5052 and aa5182 aluminum alloys during isothermal annealing. Metallurgical and Materials Transactions A 2004, 35, 3613-3629. [36] Liu, W.C.; Morris, J.G., Lattice rotation and stability of 22.5° nd rotated cube orientation in cold rolled polycrystalline aa 5182 aluminum alloy. Materials Science and Engineering: A 2004, 380, 147-154. [37] Ion, S.E.; Humphreys, F.J.; White, S.H., Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica 1982, 30, 1909-1919.
摘要: Lightweight materials must be high strength and lightweight. In the present study, new severe plastic deformation (SPD) technique, through-width vibration rolling (TWVR), was investigated for continuously producing high-strength aluminum sheet. The TWVR process heavily deformed the metal between rollers by plastically compression and shear deformation. AA5052 Al-Mg and AA6061 Al-Mg-Si alloys were selected as the test samples. The yield strength of the as-processed 5052 alloy by TWVR (5 Hz-1 mm) was 369 MPa that large 181 MPa than the commercial 5052 alloy. During annealing temperature 150 °C and 200 °C process, the as-TWVR AA5052 sheets had respectively average yield strength 324 MPa and 302 MPa. The elongation of as-TWVR 5052 samples was 8% when annealing temperature at 200 °C. The microstructure of as-TWVR 5052 samples had UFG structure at 150 °C and 200 °C annealing treatment. The typical rolling textures in 5052 samples develop to a strong Cube texture at 150 °C annealing. As-TWVR 6061-T4 sheet had maximum yield strength 450 MPa, corresponding to 5 Hz-1.5 mm. The yield strength of the as-TWVR samples large 181 MPa than commercial 6061-T6 alloy sheets. The as-TWVR sample was then directly subjected to aging treatment, by which peak aging stress 480 MPa could be obtained.
近年來輕金屬材料被普遍使用於車用載具上來減少碳排放及能源消耗,所以材料的選用必須是質輕且具高強韌性。橫錯軋延製程是利用板材進行軋延時,同時施予試片一垂直軋延方向的橫向錯動,此新穎技術藉此方式提高板材材料塑性變形量強化鋁合金版材強度。車輛載具的結構材料常使用5系列鋁合金做為車輛內部板金結構材料,而6系列鋁合金作為車輛外部板金結構材料,所以本研究採用5052及6061鋁合金作為測試材料。由實驗中可知在材料進行軋延同時加上橫向錯動可使材料強度提高,如試片於100℃_5Hz_1mm時可得到比商用5052_H32鋁合金高181 MPa的降伏強度(369MPa)之鋁合金板。此外當5052鋁合金板經橫錯軋延製程後進行為結構觀察其內部晶粒皆有細化之情況。由於5052鋁合金板材須進行安定化處理,處理溫度約150 °C。所以將橫錯軋延後試片經150 °C / 200 °C退火處理,可發現長時間150 °C / 200 °C退火平均強度維持在324 MPa / 302 MPa不軟化,相較一般安定化處理的強度188 MPa高出約1.5倍。在200 °C退火後延伸率可達到8%。觀察此時織構變化可知,橫錯軋延後試片經150 °C退火後由原本的軋延織構轉變成高取向強度的Cube織構。6061-T4鋁合金於100℃_5Hz_1.5mm的橫錯軋延條件下,材料降伏強度可達450 MPa,比一般商用的6061鋁合金強度高出181 MPa。再進行後續的時效處理,在尖峰時效狀態下,6061材料降伏強度高達480 MPa。
URI: http://hdl.handle.net/11455/91939
其他識別: U0005-1507201410353700
文章公開時間: 2017-07-16
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.