Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91941
標題: 鎳鐵/氧化鈷/氧化鐵及離子束轟擊[銅/鈷]薄膜之微結構及磁性質研究
The studies of microstructure and magnetic properties of NiFe/Co-oxide/Fe-oxide and ion beam bombarded [Cu/Co] thin films
作者: 葉韋呈
Wei-Cheng Yeh
關鍵字: 交換偏壓
雙離子束濺鍍系統
Dual ion Beam Assisted Deposition
Exchange Bias
引用: 第一章參考文獻 [1] J. M. Daughton, Thin Solid Films, 216, 162-168 (1992). [2] W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962). [3] W. H. Meiklejohn, C.P. Bean, Phys. Rev.,102, 1413(1956). [4] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [5] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [6] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [7] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [8] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [9] J. Nogu’es, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [10] 杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、 卓育泯,磁性基本特性及磁性材料應用國立台灣大學化學系。 [11] Nicola A.Spaldin,”Magnetic materials”, (2010). [12] David Jiles,”Introduction to magnetism and magnetic materials”,Chapman & Hall. [13] 金重勳主編,”磁性技術手冊”,中華民國磁性技術協會。 [14] 鄭振東,“實用磁性材料”,全華科技圖書股份有限公司(1999)。 [15] J. Nogues, J. Sort, V. langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Phys. Rep.,422 65-117(2005). [16] 胡裕民、黃榮俊,”鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月 刊 22 卷六期。 [17] N. Smith, W.C. J. Appl. Phys., 69, 2471 (1991). [18] U. Nowak, K. D. Usadel, Phys. Rev. B., 66, 014430 (2002). [19] N. Persat, A. Dinia, J. P. Jay, C. Meny, P. Panissod J. Magn. Magn. Mater., 164, 37 (1996). 第二章參考文獻 [1] R. C. Weast,”Handbook of Chemistry and Physics”,CRC Press, Inc 1986. [2] E. M. Levin et al,”Phase Diagram for Ceramists”, Amer. Cer. Soc., 1964. [3] J. C. A. Huang, T. E. Wang, C.C. Yu, Y. M. Hu, P. B. Lee, M. S. Yang, J. Cryst. Growth. 171, 442, (1997). [4] E. M. Levin et al,”Phase Diagram for Ceramists”, Amer. Cer. Soc., (1964). [5] T. C. Anthony, J. Brug, S. Zhang, IEEE Trans. Magn., 30, 3818 (1994). [6] A. E. Beekowitz, K. Takono, J. Magn. Magn. Mater., 200, 552 (1999). [7] D. Lederman, J. Nogues, Phys. Rev. B. 56(5), 2332 (1997). [8] V. M. Jimenez, J. P. Espinos, A. R. Gonzalez-Elipe, Surf. Interface Anal. 26, 62, (1998). [9] R. C. O’Handley, ”Modern Magnetic Materials”, John Wiley and Sons Inc., 2000. [10] A. D. D. Broemme, IEEE Trans. Electr. Insul. 26, 49, 1991. [11] G. Rollmann, A. Rohrbach, Phys. Rev. B. 69, 165107 (2004). [12] William C. Cain, William H. Meiklejohn, J. Appl. Phys., 61, 4170 (1987). [13] T. B. Massalski et al., “Binary Alloy Phase Diagrams”, ASM Internation,1990. [14] V. Raghavan,”Phase diagrams of Ternary iron alloys part 5 Ternary systems containing iron and oxygen”. [15] J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, ”Handbook of ion beam processing technology : principles, deposition, film modification, and synthesis”, Noyes Publication, 1989. [16] 李正中,”薄膜光學與鍍膜技術”,逸軒圖書出版社,2001。 [17] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [18] C. Weissmantle,”Ion Beam Deposition of Special Film Structure”, J. Vac. Sci. Technol., 18, 179 (1989). [19] K. W. Lin, M. R. Wei, J. Y. Guo, J. Nanotechnol., 9, 2023 (2009). [20] T. C. Huang, G. Lim, F. Parmigiani, E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985). [21] Milton Ohring,”Materials Science of Thin Films”, (2002) 第三章參考文獻 [1] 汪建民主編,”材料分析”, 中國材料學學會。 [2] C. H. Lai, P. H. Huang, J. Appl. Phys., 95, 7222 (2004). [3] 陳力俊主編,”材料電子顯微鏡學”, 國家實驗研究院儀器科技研究中心。 [4] David B. Williams, C.Barry Carter,”Transmission Electron Microscopy”, Plenum Press (1996). [5] 劉琪欣,國立中興大學碩士論文(2013)。 [6] T. L. Barr, “Modern ESCA : the principles and practice of X-ray photoelectron spectroscopy”, CRC Press Inc.,(1994). [7] David Jiles,”Magnetism and Magnetic Materials”,Chapman & Hall, (1991). [8] 楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五 期。 [9] J. Claudon, F. W. J. Hekking, and O. Buisson, Phys. Rev. Lett. 93, 187003 (2004). 第四章參考文獻 [1] John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, ”Handbook of X-ray Photoelectron Spectroscopy”. [2] Ivanov-Emin B.N., Nevskaya N.A.,Zaitsev B.E., Ivanova T.M. Zh. Neorg. Khimii 27, 3101 (1982). [3] A. Mekki, D. Holland, Kh. Ziq, and C. F. Mcconville, J. Non-Cryst. Solids. 220, 267 (1997). [4] C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder, ”Handbook of X-ray Photoelectron Spectroscopy”, Perkin Elmer Corp. (1984). [5] A. P. Grosvenor, B. A. Kobe, M. C. Biesinger and N. S. McIntyre, Surf. Interface Anal., 36, 1564 (2004). [6] Linda S. Dake, David E. King, Alvin W. Czanderna, Solid State Sciences 2 ,781, (2000). [7] R. Kapica, W. Redzynia, M. Kozanecki, M.M. Chehimi, J.Sielski, S. M. Kuberski, J. Tyczkowski, Materials Science, 19, 1392 (2013). [8] A. Loez et al. J. Magn. Magn. Mater. 61, 191 (1999).
摘要: This study used ion beam assisted deposition(IBAD) for preparing samples and it divided into two parts: (1)NiFe/Co-oxide/Fe-oxide trilayer thin film、(2)Cu/Co bilayer and [Cu/Co]5 multilayer thin film.The structure and magnetic properties of two parts were charaterized using X-ray diffraction (XRD),Transmission electron microscopy (TEM), Electron spectroscopy for chemical analysis (ESCA), Vibrating sample magnetometer (VSM), Superconducting quantum interference device magnetometer (SQUID) down to 10 K. (1) NiFe/Co-oxide/Fe-oxide trilayer thin film has shown that the NiFe layer consisted of a f.c.c. structure (a~3.55 A ),the Co-oxide layer consisted of rock-salt CoO structure (a~4.28 A ),the Fe-oxide layer by 21% O2/Ar ion-beam bombardment consisted of (a~5.0 A ,c~13.87 A ),and Fe-oxide layer by 41% O2/Ar ion-beam bombardment consisted of Fe3O4 (a~8.77 A ).Grain sizes ranged from 5~13 nm. Magnetometry results at 180 K after 12k Oe field-cooling (FC) process,the NiFe/Co-oxide bilayer exhibited the largest coercivity (Hc~39 Oe) and exchange bias(HEX~121 Oe).When at 10 K after FC process,NiFe/Fe-oxide(21% O2/Ar) bilayer exhibited the largest coercivity (Hc~175 Oe), NiFe/Fe-oxide(41% O2/Ar) bilayer exhibited the largest exchange bias (HEX~121 Oe); The different regimes of M(T) behavior identifies that the response of the magnetization in the NiFe layer crystallites coupled to the α-Fe2O3 or CoO crystallites. (2)Using ion beam assisted deposition (IBAD) deposited Cu/ Co bilayer and [Cu/Co]5 multilayer by ion-beam bombardment let Co or Co-oxide to embed in copper film, a cobalt-copper alloy formed in interface. By XRD and TEM results to know the structure is consisted of f.c.c. Cu (a~3.61 A )、rock-salt CoO (a~4.26 A )、f.c.c. Co (a~3.57 A )、Co3O4 (a~8.17 A ). At low temperature a transition from paramagnetic to ferromagnetic or superparamagnetic behavior is observed. The different M(T) behavior indicated that the response of Co behaves differently depending on the forms of Co (layered Co or nanoparticle Co surrounded by Cu and Co-oxide). By AC susceptility curve to characterize the films different forms of Co-oxide (CoO and Co3O4).
本研究分為兩大部分:使用雙離子束輔助濺鍍系統製備(1)鎳鐵/鈷氧化物/鐵 氧化物三層薄膜,使用輔助離子束(End-Hall)以 70 V 轟擊鈷氧化物及鐵氧化物,鍍著鐵氧化物時並改變不同氧分壓(21%、41%O2/Ar),藉此來探討相異反鐵磁層間對交換耦合之影響;(2)個別以 35 V、70 V 之輔助離子束(End-Hall)轟擊銅/鈷雙層膜及[銅/鈷]5 多層膜且改變多層膜中鈷層鍍著時間(60 s、30 s、15 s),來探討其薄膜結構及磁性質效應。 由 XRD 及 TEM 結果顯示出鎳鐵/鈷氧化物/鐵氧化物三層薄膜中為 f.c.c.結構之鎳鐵晶格常數約為 3.55 A,氧化鈷層為岩鹽結構之 CoO 其晶格常數為4.28 A,氧化鐵在 21%氧分壓下為 α-Fe2O3 晶格常數約為 a~5.0 A,c~13.87 A、在 41%氧分壓下為 Fe3O4 晶格常數約為 8.77 A,晶粒大小約介於 5~13 nm 之間。在磁性質分析中,在 180 K 時鎳鐵/氧化鈷雙層膜具有最大之矯頑磁力(Hc~39 Oe)及交換偏壓(HEX~121 Oe),而在 10 K 時發現鎳鐵/氧化鐵(21%)具有最大之矯頑磁力(Hc~175Oe)、鎳鐵/氧化鐵(41%)具有最大之交換偏壓(HEX~192 Oe),由場冷及零場冷曲線中可以發現鎳鐵與氧化鈷層之不可逆溫度(Tirr)約在 248 K 時產生較鎳鐵與氧化鐵層之不可逆溫度(Tirr)約在 70 K時產生高,在 10K 時以鎳鐵/氧化鐵(21%)為最大值△M FC-ZFC(%)=45 %,氧化鐵層之磁異向性(K)會隨著溫度下降會隨之增加。 在銅/鈷薄膜系列中,經由 XRD 及 TEM 結果顯示薄膜中具有 f.c.c.結構之銅晶格常數約為 3.61 A、b.c.c.結構之 Cu2O 晶格常數約為 4.28 A、岩鹽結構之 CoO晶格常數約為 4.26 A 、f.c.c.結構之鈷晶格常數約為 3.57 A 、Co3O4 晶格常數約為8.17 A;在磁性質量測方面,銅(5 min)/鈷(5 min)雙層膜在180 K呈現超順磁特性,[銅(1 min)/鈷(60 s)]5多層薄膜為鐵磁特性,[銅(1 min)/鈷(30 s)]5多層薄膜在 180 K以下為鐵磁特性,[銅(1 min)/鈷(15 s)]5 多層薄膜在 180 K 為超順磁特性,在場冷及零場冷 M(T)曲線中產生之行為取決於 Co 原子之形式,是否被氧化及被氧化成CoO 或 Co3O4 兩者氧化物之比例以及是否被銅包覆形成奈米粒子。
URI: http://hdl.handle.net/11455/91941
其他識別: U0005-3006201411592600
文章公開時間: 2016-12-16
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.