Please use this identifier to cite or link to this item:
標題: 鎳鐵/氧化鉻及鎳鐵/氧化鐵雙層膜之微結構及磁性質研究
The studies of microstructures and magnetic properties of NiFe/Cr-oxide and NiFe/Fe-oxide bilayers
作者: 羅文孜
Wen-Tzu Lo
關鍵字: 交換偏壓
exchange bias
dual ion beam assisted deposition
引用: 第一章參考文獻 1. [1]A.Moser et al.,J.Phys.D:Appl.Phys.,35,R157(2002). 2. [2]郭博成,磁性技術手冊,第十三章,磁紀錄簡介;張慶瑞,物理會刊,十一卷三期,268(1989);黃暉理、揚志信,物理季刊,七卷二~四期,71(1985)。 3. [3]J.DLivingston,Scientific American,PP. 80-5,Nov.(1998). 4. [4]W.P.Meiklejohn,C.P.Bean,Phys.Rev.102,1413(1956). 5. [5]W.P.Meiklejohn,J.Appl.Phys.33,1328(1962). 6. [6]D.Mauri,H.C.Siegmann,J.Appl.Phys.82,3047(1987). 7. [7]A.P.Koon,Phys.Rev.Lett.78,4865(1997). 8. [8]T.C.Schulthess and W.H.Butler,Phys.Rev.Lett.81,4516(1998). 9. [9]A.E.Berkowitz,Kentaro.Takano,J.Magn.Magn.Mater.200,552(1999). 10. [10]N.C.Koon,Phys.Rev.Lett.78,4865(1997). 11. [11]J.Nogues, and Ivan K.Schuller,J.Magn.Magn.Mater.192,203(1999). 12. [12]M.H.Hong,K.Hono,andM.Watanabe,J.Appl.Phys.,84,4403(1998). 13. [13]杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,磁性基本特性及磁性材料應用國立台灣大學化學系。 14. [14]D. K. Cheng Field and Wave Electromagnetics,3rded,Addison-Wesley,New York (1989). 15. [15]David Jiles,”Introduction to magnetism and magnetic materials”,Chapman & Hall. 16. [16]Nicola A.Spaldin,”Magnetic materials”, (2010). 17. [17]金重勳主編,”磁性技術手冊”,中華民國磁性技術協會。 18. [18]W. H. Meiklejohn, C.P. Bean, Phys. Rev.,102, 1413(1956). 19. [19]J. Nogues, J. Sort, V. langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Phys. Rep.,422 65-117(2005). 20. [20]胡裕民、黃榮俊,”鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”,物理雙月刊22卷六期。 21. [21]W. P. Meiklejohn,J. Appl. Phys.33, 1328 (1962). 22. [22]A.E. Berkowitz, K. Takano / Journal of Magnetism and Magnetic Materials 200, 552-570 (1999). 23. [23]D. Mauri, H. C. Siegmann, P. S. Bagus and E. Kay, J. Appl. Phys.82, 3047 (1987) . 24. [24]A. P. Malozemoff, Phys. Rev. B, 30,3679 (1987). 25. [25]N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). 26. [26]U. Nowak, K. D. Usadel, Phys. Rev. B., 66, 014430 (2002). 27. [27]G. J. Li, C. W. Leung, Y. C. Chen , J. H. Hsu , A. C. Sun , K. W. Lin* , P. W. T. Pong, IEEE Trans. Magn., vol. 49, 3310 (2013). 28. [28]C.-H. Lai, W. C. Lien, F. R. Chen, J. J. Kai and S. Mao, J. Appl. Phys. 89, 6600 (2001). 29. [29]柯沛杭,國立中興大學碩士論文(2006)。 30. [30]呂昭德,國立中興大學碩士論文(2010)。 31. [31]D. L. Cortie, K.-W. Lin, C. Shueh, H.-F. Hsu, X. L. Wang, M. James, H. Fritzsche, S. Brück, and F. Klose Phys. Rev. B 86, 054408 (2012). 32. [32]藍天琪,國立中興大學碩士論文(2013)。 33. [33]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett.61,2472 (1998). 34. [34]B. Dieny, V. S. Speriosu, S. S. P. Parkung, B.A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. 43,1297(1991). 35. [35]A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). 36. [36]P.Hones,M.Diserens, F. Le´vy, Surface and Coatings Technology 120–121,277–283 (1999). 37. [37]Sang-Yong Jeong , Jin-Bok Lee, Hyunseok Na, Tae-Yeon Seong, Thin Solid Films 518 ,4813–4816(2010). 38. [38]A. Zelenakova, J. Kovac and V. Zele•nakc , Acta Phys. Pol. A 115, 357–359 (2009). 39. [39]D. L. Cortie, , K.-W. Lin, C. Shueh, H.-F. Hsu, X. L. Wang, M. James, H. Fritzsche, S. Bruck, and F. Klose, PHYSICAL REVIEW B 86, 054408 (2012). 第二章參考文獻 40. [1]R. C. Weast,”Handbook of Chemistry and Physics”,CRC Press, Inc 1986. 41. [2]R. C. O’Handley, ”Modern Magnetic Materials”, John Wiley and Sons Inc., 2000. 42. [3]J. C. A. Huang, T. E. Wang, C.C. Yu, Y. M. Hu, P. B. Lee, M. S. Yang, J. Cryst. Growth. 171, 442, (1997). 43. [4]E. M. Levin et al,”Phase Diagram for Ceramists”, Amer. Cer. Soc., (1964). 44. [5]T. C. Anthony, J. Brug, S. Zhang, IEEE Trans. Magn., 30, 3818 (1994). 45. [6]A. E. Beekowitz, K. Takono, J. Magn. Magn. Mater., 200, 552 (1999). 46. [7]D. Lederman, J. Nogues, Phys. Rev. B. 56(5), 2332 (1997). 47. [8]E. Fawcett, Rev. Mod. Phys. 60, 209 (1988). 48. [9]V. Raghavan,”Phase diagrams of Ternary iron alloys part 5 Ternary systems containing iron and oxygen”. 49. [10]R.C. Weast, Handbook of Chemistry and Physics, CRC Press, Inc.(2001). 50. [11]B.D. and S. R. Stock, Elements of X-ray Diffraction, Prentice-Hall,Inc.(2001). 51. [12]Ho-kwang Mao and Jinfu Shu, Physics of the earth and Planetary Interiors, 96,135(1996). 52. [13]Bruce M. Moskowitz, Hitchhiker’s Guide to Magnetism, P.16. 53. [14]William C. Cain and William H. Meiklejohn, J. Appl. Phys., 61, 4170(1987). 54. [15]G. Rollmann, A. Rohrbach, Phys. Rev. B. 69, 165107 (2004). 55. [16]H. Okamoto, Binary Alloy Phase Diagrams, Vol. 2, ASM International, 2nd edition (1992). 56. [17]J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, ”Handbook of ion beam processing technology : principles, deposition, film modification, and synthesis”, Noyes Publication, 1989. 57. [18]李正中,”薄膜光學與鍍膜技術”,逸軒圖書出版社,2001。 58. [19]H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). 59. [20]C. Weissmantle,”Ion Beam Deposition of Special Film Structure”, J. Vac. Sci. Technol., 18, 179 (1989). 60. [21]T. C. Huang, G. Lim, F. Parmigiani, and E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985). 61. [22]R. A. Roy, D. Yee, and J. J. Cuomo, J Vac. Sci. Technol. A, 6, 1621 (1988). 62. [23] K. W. Lin,M. R. Wei, J. Y. Guo, J. Nanosci. Nanotechnol., 9, 2023 (2009). 63. [24]C. Weissmantle,“Ion Beam Deposition of Special Film Structure”, Vac. Sci. Techol., 18, 179 (1989). 64. [25]J. J. Cuomo, S. M. Rossnagel,“Handbook of Ion Beam Processing Technology”, Noyes publications, 194 (1989). 第三章參考文獻 65. [1]林麗娟, 工業材料, 86期, X光繞射原理及其應用。 66. [2]汪健民主編, “材料分析”, 中國材料科學學會, 1998。 67. [3]陳力俊等著,“材料電子顯微鏡學”, 科技研究中心發行, 1994。 68. [4]龔志榮,駱榮富,”電子顯微鏡教材大綱”。 69. [5]賴英煌、邱雯藝、洪偉修,'同步輻射X-ray 光電子能譜在表面化學之研究'CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) SEP. 2002 Vol. 60, No. 3, pp.381~390。 70. [6]G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986). 71. [7]文.圖卅李其紘, 原子力顯微鏡的基本介紹, 科學研習 2013 年 5 月,No. 52-5。 72. [8]黃英碩, 掃描探針顯微術的原理及應用, 科儀新知, 第二十六卷第四期, 94.2 。 73. [9]D. Jiles Introduction to Magnetism and Magnetic Materials, Chapman and Hall (1991). 74. [10]楊鴻昌,物理會刊,第二十四卷五期,652-665 (2002)。 75. [11]J. B. Hayter et al., J. Phys. E: Sci. Instrum. 11 (1978) 454][ F. Mezei, Commun. Phys. 1 (1976) 81. 76. [12]蘇暉家 與李志浩 物理雙月刊, 30 卷 1 期 2008.。 77. [13]李志浩,TWNSS Newsletters,Vol. 2, No. 2 (2014)。 第四章參考文獻 78. [1]K.-W. Lin and J.-Y. Guo, J. Appl. Phys. 104, 123913 (2008). 79. [2]Jung-Yi Guo, “Exchange-bias effects in NiFe/Cr-oxide bilayers and [Pt/Co]4/Cr2O3 multilayers”, (2010). 80. [3]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, published by Perkin-Elmer Corp., 1992, Eden Prairie, MN, USA. 81. [4]Dhekial-Phukan, Tina,.Doctoral Dissertations. Paper 2114, (2010). 82. [5]A. Zelenakovaa, J. Kovacb and V. Zele•nakc,“Exchange Bias in Iron-Oxide Particles Nanocasted in Periodic Porous Silica”, Acta Physica Polonica A, vol. 115, no. 1, pp. 357-359, Jan. (2009). 83. [6]D. L. Cortie, K.-W. Lin, C. Shueh, H.-F. Hsu,X. L. Wang, M. James,H. Fritzsche,S. Bruck, and F. Klose, PHYSICAL REVIEW B 86, 054408 (2012).
摘要: In this study, ion beam assisted deposition(IBAD) is used for preparing samples and it is divided into two parts: (1)NiFe/Cr-oxide bilayers thin film, we investigate the different percent oxygen contents ratio into Cr-oxide layers during deposition, as well as the effects of annealing the Cr-oxide layers on the magnetic properties, and (2)NiFe/Fe-oxide bilayers thin film. (1)NiFe/Cr-oxide bilayers thin film has shown that the NiFe layer consisted of a f.c.c. structure, and the different percent oxygen into Cr-oxide layers form different structure .The enhanced coercivity (Hc) and exchange bias field (Hex) were found in these bilayers at 10 K after a 10 kOe field-cooling (FC) process from 400 K. However, Hex values were found to increase for films with increasing deposited oxygen content, from Hex ~ -35 Oe (26% O2/Ar), to Hex ~ -75 Oe( 41% O2/Ar). In contrast, with annealing, a decreased Hex~ -25 Oe(41% O2/Ar) for the NiFe/annealed Cr-oxide bilayers are attributed to a structural phase transformation from Cr2O3 to Cr3O4 with improved crystallinity (shown by electron diffraction patterns and x-ray photoelectron spectroscopy). The temperature dependent low-field magnetization (M(T)) of the NiFe/Cr-oxide bilayers under FC and ZFC processes was characterized also. The different oxygen contents of the Cr-oxide layers played an important role in affecting the magnetization of ferromagnetic NiFe crystallites, as revealed by an alteration of the irreversibility temperatures (Tirr) and differences in M(T). Furthermore, the Tirr as well as alterations of Hex in NiFe/Cr-oxide (26% O2/Ar) bilayer deposited on Al2O3(0001) substrates imply changes in spin structures by using single crystalline substrates. (2) NiFe/Fe-oxide bilayers thin film has shown the NiFe layer consisted of f.c.c structure structure (a~3.59 Å), the Fe-oxide layer by 41% O2/Ar ion-beam bombardment consisted of corundum α-Fe2O3 structure (a~5.04 Å ,c~13.73 Å) by XRD and TEM. The magnetic properties of the film, without the exchange bias at room temperature. Moreover, the preliminary PNR data understand the mechanism for the magnetic reversal within the bilayer.
本研究分為兩大部分:利用雙離子束輔助濺鍍系統製備(1)鎳鐵/氧化鉻雙層薄膜,使用輔助離子束(End-Hall)以140 V轟擊鉻氧化物,在鍍著鉻氧化物時改變不同氧分壓(26%、41% O2/Ar)及熱退火處理後,藉此來探討其薄膜結構及磁性質之影響;(2)鎳鐵/氧化鐵(41% O2/Ar)雙層薄膜來探討薄膜結構及磁性質效應。 由XRD及TEM結果顯示出在鎳鐵/氧化鉻雙層薄膜中其鎳鐵結構為f.c.c.,而氧化鉻為不同之結構(Cr2O3、Cr3O4、CrO3)所組成的與製程之氧含量有關。此雙層膜於外加場10 kOe場冷過程從400 K至10 K,發現其矯頑磁力與交換偏壓場皆增加。而交換偏壓隨著氧含量增加而增加,從交換偏壓-35 Oe(26% O2/Ar)增加至-75 Oe(41% O2/Ar)。不過,氧化鉻經退火處理之後,降低其交換偏壓降至-25 Oe(41% O2/Ar),由於部分反鐵磁層Cr2O3相轉變為非磁性Cr3O4,可由繞射環及X光繞射分析儀得知。磁化量對溫度相依性(場冷與零場冷)研究顯示,不同氧含量在氧化鉻層扮演著重要的角色,其影響鐵磁層之鎳鐵微晶的磁化作用,揭示磁化量與溫度的差異及不同之不可逆溫度(Tirr)。此外鎳鐵/氧化鉻(26% O2/Ar)沉積於Al2O3(0001)單晶基板,使得交換偏壓及不可逆溫度(Tirr)改變,意味著使用單晶基板可改變其自旋結構。 在鎳鐵/氧化鐵(41% O2/Ar)雙層薄膜中,經由XRD及TEM結果顯示此薄膜由面心立方結構(f.c.c.) 之鎳鐵( a~3.59 Å),與剛玉型結構之α-Fe2O3( a~5.04 Å、c~13.73 Å)所組成;在磁性質量測方面,在室溫下(298 K) ,此雙層膜無明顯之交換偏壓(Hex)產生。此外,藉由初步極化中子反射儀研究磁性翻轉機制,在外加場250 Oe時得到一交換彈簧(exchange spring)模型。
其他識別: U0005-0907201511563700
文章公開時間: 2018-07-27
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.