Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91946
標題: 離子束濺鍍之氧化鈷/鈷薄膜微結構及磁性質研究
The structures and magnetic characterization of ion-beam sputtered CoO/Co/SiO2 thin films
作者: 梁本根
Pen-Ken Liang
關鍵字: 雙離子束濺鍍
dual ion beam sputtering
引用: [1] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] W. P. Meiklejohn, J. Appl. Phys., 33, 1328 (1962). [3] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [4] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [5] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [6] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [7] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [8] J. Nogues, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [9] 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [10] 聶亨芸,國立清華大學碩士論文 (2002)。 [11] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [12] Nicola A. Spaldin,”Magnetic materials”. [13] Soshin Chikazumi 著,張煦、李學養合譯,”磁性物理學”。 [14] 賴柜宏,國立成功大學碩士論文 (2003)。 [15] N. Koon, Phys. Rev. Lett., 78, 4865 (1997). [16] D. Thompson et al., IEEE Trans. Magn.,11, 1036 (1975). [17] J. Noguesa, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Physics Reports, 422, 65 (2005). [18] A. P. Malozemoff, Phys. Rev. B., 37, 7673 (1988). [19] A. P. Malozemoff, J. Appl. Phys., 63, 3874 (1988). [20] K. Takano, R. H. Kodama, A. E. Berkowitz, Phys. Rev. Lett., 79, 1130 (1997). [21] K. Takano, R. H. Kodama, A. E. Berkowitz, J. Appl. Phys., 83, 6888 (1998). [22] U. Nowak and K. D. Usadel, Phys. Rev. B., 66, 014430 (2002). [23] B. Beckmann, U. Nowak, and K. D. Usadel, Phys. Rev. Lett., 91, 187201-1 (2003). [24] 魏德新、許瑤真,”影像式光電子顯微術於磁性薄膜及微結構研究的介紹”, 物理雙月刊廿六卷四期。 [25] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61, 2472 (1998). [26] 王郁仁,國立清華大學博士論文 (2004)。 [27] R.R.Katti,proceedings of the IEEE.91,687(2003). [28] 張慶瑞,旋轉的新世紀-自旋電子傳輸與自旋電子學,”物理雙月刊”, 26卷6期(2000)。 [29] B. D. Cullitu and S. R. Stock, ”Element of X-Ray Diffraction”. [30] R. C. O’Handley, “Modern Magnetic Materials“, John Wiley and Sons Inc.(2000) [31] 郭仲儀、張書綺、林信儒、林克偉,“雙離子束濺鍍系統之原理及應用”,真 空科技十九卷四期。 [32] J. J Cuomo, A. M. Rossnagel, H. R.Kaufman eds., “Handbook of Ion Beam ProcessingTechnology”, Noyes Publishers, ch.3(1989). [33] T. C. Huang, G. Lim, F. Parmigiani, and E. Kay, J. Vac. Sci. Technol. A, 3, 216 (1985). [34] H. R. Kaufman, R S. Robinson, R. I. Seddon,J. Vac. Sci. Technol A., 5, 2081 (1987). [35] R. A. Roy, D. Yee, and J. J. Cuomo, J. Vac. Sci. Technol. A, 6, 1621 (1988). [36] C.H.Lai, P.H.Huang, J.Appl. Phys., 95, 7222 (2004). [37] 林麗娟,”X 光繞射原理及其應用”,工業材料86 期。 [38] Bruce M. Moskoeitz, Hitchhhiker’s Guide to magnetism. [39] 汪建民主編,"材料分析",中國材料科學學會。 [40] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy”, Plenum Press (1996). [41] 龔志榮,駱榮富,”電子顯微鏡教材大綱”。 [42] David Jiles,”Magnetism and Magnetic Materials”, Chapman & Hall,(1991).
摘要: In this study, the anti-ferromagnetic layer (CoO) and the ferromagnetism layer (Co) was prepared for dual ion beam sputtering (DIBS) to discuss the influence of microstructural and magnetometry properties. Step1. sputtering (Co) layer on sio2 substrate by using Kaufman ion source, Step2. sputtering (CoO) layer on (Co) layer. The (CoO) and (Co) bilayers consisted of a h.c.p. structure (Co, a=2.5Å,c=3.9Å) and a (15% O2/Ar) f.c.c. (rock-salt) structure (CoO, a=4.3Å).The TEM cross section shown the (Co) layer about 60nm and the (CoO) layer about 55nm, the interface between (CoO) and (Co) bilayers was very neat not diffuse and mixed.The CoO/Co grain size about 10~40nm from bright field and dark field. Measurement CoO/Co bilayers at room temperature, the Hc about 252Oe, the Hex shifting was not obvious, the cause of the room temperature higher than anti-ferromagnetic layer (CoO) Neel temperature (291K), the anti-ferromagnetic layer was paramagnetism, the CoO/Co bilayers was no exchange coupling effect. The CoO/Co/SiO2 ion bombardment depth profiling time at 1, 7, 15 minutes, each layer composition percentage were different,there are variations in each layer interface,but on other area composition were uniformity, no diffuse and no mixed each other.
本研究使用雙離子束濺鍍系統來製備反鐵磁層(CoO)與鐵磁層(Co)的雙層薄膜,以探討其薄膜結構與磁性質的影響。實驗內容為先利用雙離子束濺鍍系統之Kaufman 離子源將鐵磁層薄膜(Co)鍍在SiO2基板上,之後再利用End Hall離子源將反鐵磁層薄膜(CoO)鍍於其上,並探討經轟擊過後CoO/ Co雙層薄膜的結構及磁性質。 離子束濺鍍之氧化鈷/鈷雙層薄膜則是由 h.c.p.結構之鈷,晶格常數為a=2.5Å,c=3.9Å,及fcc岩鹽(rock-salt)結構之氧化鈷(15% O2/Ar)所組成,晶格常數為a=4.3Å。TEM微觀分析,由橫截面影像得知,Co的薄膜厚度大約為60nm,CoO的薄膜厚度大約為55nm,CoO及Co的界面相當平整,並無相互擴散及混和的情況發生。由明視野及暗視野可推算出CoO/ Co的晶粒尺寸介於10~40nm之間。CoO/Co雙層薄膜於室溫下量測,其Hc約於252Oe,而交換偏壓場(Hex)沒有明顯的偏移,這是因為室溫下溫度尚未低於反鐵磁層的尼爾溫度所致(CoO~291K),故反鐵磁層CoO在室溫下為順磁結構,故雙層薄膜無交換耦合效應發生。 CoO/Co/SiO2離子濺擊縱深分佈,分別於離子濺擊時間於1、7、15分鐘,發生明顯的成份百分比的變化,其表示各個鍍層組成成分比例之不同,所以在層與層交界區域才會發生比例之變化,但在其他區域的組成比例並無明顯變化,由此可看出各個鍍層組成之成分均勻,並無成分滲透至其他鍍層。
URI: http://hdl.handle.net/11455/91946
其他識別: U0005-2608201505051500
文章公開時間: 10000-01-01
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.