Please use this identifier to cite or link to this item:
標題: 電化學合成 LiCoxMn2-xO4 薄膜應用於鋰離子電池正極材料之研究
Electrolytic Deposition and Characterization of LiCoxMn2-xO4 for Cathodes in Thin Film Lithium-Ion Batteries
作者: 張庭榮
Ting-Jung Chang
關鍵字: 5V 高電位正極材料
5V high voltage cathode material
spinel structure
thin film lithium-ion batteries
引用: References: 1. Zhang, S.S., The effect of the charging protocol on the cycle life of a Li-ion battery. Journal of Power Sources, 2006. 161(2): p. 1385-1391. 2. Tarascon, J.M., Tarascon, M., and Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367. 3. Kariatsumari, K. Next-Gen Batteries Going All-Solid: Demand for Large Size Batteries in EVs and Stationary Use Driving Development. . 2010. 4. Marom, R., Marom, S.F., Amalraj, N., Leifer, D., Jacob, D., and Aurbach, A review of advanced and practical lithium battery materials. Journal of materials chemistry, 2011. 21(27): p. 9938. 5. Ohzuku, T., Solid-state redox potentials for Li [Me1/2Mn3/2] O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. Journal of power sources, 1999. 81: p. 90. 6. Kawai, H., Nagata, M., Tukamoto, H., and West, A.R., High-voltage lithium cathode materials. Journal of Power Sources, 1999. 81–82(0): p. 67-72. 7. Sigala, C., Guyomard, D., Verbaere, A., Piffard, Y., and Tournoux, M., Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 ? yO4 (0 ? y ? 1). Solid State Ionics, 1995. 81(3–4): p. 167-170. 8. Amine, K., Tukamoto, H., Yasuda, H., and Fujita, Y., Preparation and electrochemical investigation of LiMn2-xMexO4 (Me : Ni, Fe, and x=0.5, 1) cathode materials for secondary lithium batteries. Journal of Power Sources, 1997. 68(2): p. 604-608. 9. EinEli, Y. and Ein, E., LiMn2?xCuxO4 Spinels (0.1 ? x ? 0.5): A new Class of 5 V Cathode Materials for Li Batteries. Journal of the Electrochemical Society, 1998. 145(4): p. 1238. 10. Fey, G. and Fey, LiNiVO4 : A 4.8 Volt Electrode Material for Lithium Cells. Journal of the Electrochemical Society, 1994. 141(9): p. 2279. 11. Fey, G.T.K., Fey, J.R., Dahn, M.J., Zhang, W., and Li, The effects of the stoichiometry and synthesis temperature on the preparation of the inverse spinel LiNiVO4 and its performance as a new high voltage cathode material. Journal of power sources, 1997. 68(2): p. 549-552. 12. Howard, W.F. and Spotnitz, R.M., Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. Journal of Power Sources, 2007. 165(2): p. 887-891. 13. Wolfenstine, J., Electrical conductivity of doped LiCoPO4. Journal of Power Sources, 2006. 158(2): p. 1431-1435. 14. Wolfenstine, J., Read, J., and Allen, J.L., Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. Journal of Power Sources, 2007. 163(2): p. 1070-1073. 15. Ellis, B., Subramanya Herle, P., Rho, Y.H., Nazar, L.F., Dunlap, R., Perry, L.K., and Ryan, D.H., Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion/electron transport. Faraday Discussions, 2007. 134(0): p. 119-141. 16. Wolfenstine, J. and Allen, Ni3+/Ni2+ redox potential in LiNiPO4. Journal of power sources, 2005. 142(1): p. 389-390. 17. Jeong, G., Kim, Y.-U., Kim, H., Kim, Y.-J., and Sohn, H.-J., Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011. 4(6): p. 1986-2002. 18. Kawai, H., Nagata, M., Tukamoto, H., and R. West, A., A novel cathode Li2CoMn3O8 for lithium ion batteries operating over 5 volts. Journal of Materials Chemistry, 1998. 8(4): p. 837-839. 19. Aitchison, P., Aitchison, B., Ammundsen, D., Jones, G., Burns, J., and Rozi?re, Cobalt substitution in lithium manganate spinels: examination of local structure and lithium extraction by XAFS. Journal of materials chemistry, 1999. 9(12): p. 3125-3130. 20. Kawai, H., Kawai, M., Nagata, H., Kageyama, H., Tukamoto, A., and West, 5 V lithium cathodes based on spinel solid solutions Li2Co1+XMn3?XO8: -1?X?1. Electrochimica Acta, 1999. 45(1): p. 315-327. 21. Shigemura, H., Tabuchi, M., Kobayashi, H., Sakaebe, H., Hirano, A., and Kageyama, H., Structural and electrochemical properties of Li(Fe, Co)xMn2 - xO4 solid solution as 5 V positive electrode materials for Li secondary batteries. Journal of Materials Chemistry, 2002. 12(6): p. 1882-1891. 22. Yoon, Y.K., Park, C.W., Ahn, H.Y., Kim, D.H., Lee, Y.S., and Kim, J., Synthesis and characterization of spinel type high-power cathode materials Li MxMn2?x O4 (M=Ni, Co, Cr). Journal of Physics and Chemistry of Solids, 2007. 68(5–6): p. 780-784. 23. Kuwata, N., Kudo, S., Matsuda, Y., and Kawamura, J., Fabrication of thin-film lithium batteries with 5-V-class LiCoMnO4 cathodes. Solid State Ionics, 2014. 262(0): p. 165-169. 24. Huang, X., Lin, M., TON, Q., Li, X., Ruan, Y., and Yang, Y., Synthesis of LiCoMnO4 via a sol?gel method and its application in high power LiCoMnO4/Li4Ti5O12 lithium-ion batteries. Journal of power sources, 2012. 202: p. 352-356. 25. Amdouni, N., Gendron, F., Mauger, A., Zarrouk, H., and Julien, C., LiMn 2? y CoyO4(0? y ? 1) intercalation compounds synthesized from wet-chemical route. Materials Science and Engineering: B, 2006. 129(1): p. 64-75. 26. K.Takahashi, T.Sotomura, and K.sato, in Jpn.Pat. 1999, 77907: Japan. 27. Bhaskar, A., Bramnik, N.N., Senyshyn, A., Fuess, H., and Ehrenberg, H., Synthesis, characterization, and comparison of electrochemical properties of LiM0. 5Mn1. 5O4 (M= Fe, Co, Ni) at different temperatures. Journal of The Electrochemical Society, 2010. 157(6): p. A689-A695. 28. Balakrishnan, P.G., Ramesh, R., and Prem Kumar, T., Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 2006. 155(2): p. 401-414. 29. Selim, R. and Bro, P., Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. Journal of The Electrochemical Society, 1974. 121(11): p. 1457-1459. 30. Dampier, F.W. and Brummer, S.B., The cycling behavior of the lithium electrode in LiAsF6/methyl acetate solutions. Electrochimica Acta, 1977. 22(12): p. 1339-1345. 31. Nishijima, M., Kagohashi, T., Imanishi, M., Takeda, Y., Yamamoto, O., and Kondo, S., Synthesis and electrochemical studies of a new anode material, Li3 ? xCoxN. Solid State Ionics, 1996. 83(1–2): p. 107-111. 32. Shodai, T., Sakurai, Y., and Suzuki, T., Reaction mechanisms of Li2.6Co0.4N anode material. Solid State Ionics, 1999. 122(1–4): p. 85-93. 33. Besenhard, J.O., Yang, J., and Winter, M., Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? Journal of Power Sources, 1997. 68(1): p. 87-90. 34. Li, C.-F., Ho, W.-H., Jiang, C.-S., Lai, C.-C., Wang, M.-J., and Yen, S.-K., Electrolytic Sn/Li2O coatings for thin-film lithium ion battery anodes. Journal of Power Sources, 2011. 196(2): p. 768-775. 35. Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T., Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science, 1997. 276(5317): p. 1395-1397. 36. Ho, W., Liu, H., Chen, H., and Yen, S., Characterization of electrolytic tin dioxide deposition on Pt for lithium ion battery applications. Surface and Coatings Technology, 2007. 201(16): p. 7100-7106. 37. Ho, W.-H., Li, C.-F., Liu, H.-C., and Yen, S.-K., Electrochemical performance of In2O3 thin film electrode in lithium cell. Journal of Power Sources, 2008. 175(2): p. 897-902. 38. Liu, H.-C. and Yen, S.-K., Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries. Journal of Power Sources, 2007. 166(2): p. 478-484. 39. Nuli, Y.-N., Zhao, S.-L., and Qin, Q.-Z., Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries. Journal of Power Sources, 2003. 114(1): p. 113-120. 40. Pasero, D., De Souza, S., Reeves, N., and West, A., Oxygen content and electrochemical activity of LiCoMnO 4? δ. Journal of Materials Chemistry, 2005. 15(41): p. 4435-4440.
摘要: The light, thin, short and small devices with environmental protection and safety should be demanded for 3C products in the 21st century. The thin film lithium batteries will play an important role on developing low-cost and high voltage applications. In this study, we try to find a novel process for preparing LiCoxMn2-xO4 coating on stainless steel by electrochemical synthesis in 0.1 M LiNO3 and 0.01 M Mn(NO3)2 mixture and then in 0.1 M LiNO3, 0.01 M Co(NO3)2 mixture aqueous solutions, respectively, and subsequent annealing. The coated specimen were characterized by XRD, TG-DTA, FE-SEM, cyclic voltammetry (CV) tests. The as-coating is composed of hydroxides of Li+, Mn2+ and Co2+ transformed into LiCoxMn2-XO4 after annealed at 300 ~ 500℃ for 3 h, but gradually decomposed into Li2O, Co3O4 and Mn2O3 at 550℃, also accompanied with the variation of surface morphology. The oxidation peaks at 2.8, 3.72 and 4.31 V (vs. Sn/Li2O anode) and reduction peaks at 2.66, 3.93 and 4.2 V (vs. Sn/Li2O anode) result from the overall cell reaction for the Li extraction/insertion reaction from/in the LiCoxMn2-xO4 with spinel structure. The peak current density of coated specimen annealed at 500℃ for 3 h is the highest around 4.2 V due to the higher crystallinity. However, the peak around 4.2 and 3.9 V for specimen annealed at 550℃almost disappear, due to the decomposition. Therefore, the annealing temperature at 500℃ is suggested for the processing.
具有輕、薄、短、小、環保與安全等性質之元件設計將是二十一世紀3C (通訊、資訊及消耗性電子產品)時代之主要趨勢,尤其在低成本與高電位之應用下,開發適當的電極材料為當下最主要的考量。 本研究利用電化學方法於0.1M硝酸鋰(LiNO3)和0.01M硝酸錳(Mn(NO3)2)水溶液及0.1M 硝酸鋰(LiNO3)和0.01M硝酸鈷(Co(NO3)2)水溶液中沉積氫氧化物於不銹鋼基材,經過退火處理獲得LiCoxMn2-xO4氧化物應用於5 V高電位薄膜鋰電池之正極材料。由XRD、TG-DTA、FE-SEM之材料分析與循環伏安 (CV)測試,發現沉積之雙層塗層為鋰(Li)、鈷(Co)和錳(Mn)之氫氧化物,退火後具有尖晶石結構,且於不同之退火溫度具有不同之電化學特性,其氧化電位分別為2.8, 3.72和4.31 V (vs. Sn/Li2O),還原電位分別為 2.66, 3.93和4.2 V (vs. Sn/Li2O)。退火溫度會影響LiCoxMn2-xO4之純度與結晶性,於500℃處理之試片其電流密度在4.2 V周圍為最高,主因為其良好之結晶性。3.9 V和4.2V之電位於550℃時均無發現,因其逐漸分解成Li2O、Mn2O3及Co3O4,影響其電池反應之性能優劣,因此本研究建議使用退火溫度500℃ 以降低雜項之含量,且具有較好之充放電性能。
其他識別: U0005-2811201416182889
文章公開時間: 2017-08-31
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.