Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91951
標題: 電化學沉積MgO/ZrO2及CaP/ZrO2鍍層於AZ91D鎂合金之研究
The Study of Electrolytic MgO/ZrO2 and CaP/ZrO2 Coatings on AZ91D Magnesium Alloy
作者: 王銘嘉
Ming-Jia Wang
關鍵字: 電解沉積
鎂合金
氧化鋯
氧化鎂
氫氧基磷灰石
抗蝕性
生物活性
electrodeposition
magnesium alloy
ZrO2
MgO
hydroxyapatite
corrosion resistance
bioactivity
引用: [1] B.L. Mordike, T. Ebert, Magnesium properties-applications-potential, Mater. Sci. Eng. A 302 (2001) 37-45. [2] M.K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol. 39 (2008) 851-865. [3] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials 27 (2006) 1728-1734. [4] R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Progress and challenge for magnesium alloys as biomaterials, Adv. Eng. Mater. 10 (2008) B3-B14. [5] N.T. Kirkland, J. Lespagnol, N. Birbilis, M.P. Staiger, A survey of bio-corrosion rates of magnesium alloys, Corros. Sci. 52 (2010) 287-191. [6] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review, J. Alloys Compd. 336 (2002) 88-113. [7] H. Hornberger, S. Virtanen, A.R. Boccaccini, Biomedical coatings on magnesium alloys - A review, Acta Biomater. 8 (2012) 2442-2455. [8] F. Stippich, E. Vera, G.K. Wolf, G. Berg, C. Friedrich, Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation, Surf. Coat. Technol. 103-104 (1998) 29-35. [9] T. Lei, C. Ouyang, W. Tang, L.F. Li, L.S. Zhou, Preparation of MgO coatings on magnesium alloys for corrosion protection, Surf. Coat. Technol. 204 (2010) 3798-3803. [10] T. Lei, C. Ouyang, W. Tang, L.F. Li, L.S. Zhou, Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process, Corros. Sci. 52 (2010) 3504-3508. [11] Q. Cai, L. Wang, B. Wei, Q. Liu, Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes, Surf. Coat. Technol. 200 (2006) 3727-3733. [12] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings, Corros. Sci. 50 (2008) 1744-1752. [13] H. Duan, K. Du, C. Yan, F. Wang, Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochim. Acta 51 (2006) 2898-2908. [14] S.V. Lamaka, G. Knörnschild, D.V. Snihirova, M.G. Taryba, M.L. Zheludkevich, M.G.S. Ferreira, Complex anticorrosion coating for ZK30 magnesium alloy, Electrochim. Acta 55 (2009) 131-141. [15] W. Shang, B. Chen, X. Shi, Y. Chen, X. Xiao, Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol–gel technique, J. Alloys Compd. 474 (2009) 541-545. [16] J. Liang, L. Hu, J. Hao, Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes, Appl. Surf. Sci. 253 (2007) 4490-4496. [17] R. Arrabal, E. Matykina, P. Skeldon, G.E. Thompson, A. Pardo, Transport of species during plasma electrolytic oxidation of WE43-T6 magnesium alloy, J. Electrochem. Soc. 155 (3) (2008) C101-C111. [18] J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, W. Dietzel, Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes, Electrochim. Acta 54 (2009) 3842-3850. [19] C.F. Li, W.H. Ho, S.K. Yen, Effects of applied voltage on morphology and crystal orientation of Mg(OH)2 coating on Pt by electrochemical synthesis, J. Electrochem. Soc. 156 (2) (2009) E29-E34. [20] C.F. Li, M.J. Wang, W.H. Ho, H.N. Li, S.K. Yen, Effects of electrolytic MgO coating parameters on corrosion resistance of AZ91D magnesium alloy, J. Electrochem. Soc. 158 (2) (2011) C11-C16. [21] Y. Tang, X. Zhao, K. Jiang, J. Chen, Y. Zuo, The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment, Surf. Coat. Technol. 205 (2010) 1789-1792. [22] W. Mu, Y. Han, Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation, Surf. Coat. Technol. 202 (2008) 4278-4284. [23] S.K. Yen, S.H. Chiou, S.J. Wu, C.C. Chang, S.P. Lin, C.M. Lin, Characterization of electrolytic HA/ZrO2 double layers coatings on Ti-6Al-4V implant alloy, Mater. Sci. Eng. C 26 (2006) 65-77. [24] J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335-2346. [25] F. Witte, The history of biodegradable magnesium implants: A review, Acta Biomater. 6 (2010) 1680-1692. [26] H. Waizy, J.M. Seitz, J. Reifenrath, A. Weizbauer, F.W. Bach, A. Meyer-Lindenberg, B. Denkena, H. Windhagen, Biodegradable magnesium implants for orthopedic applications, J. Mater. Sci. 48 (2012) 39-50. [27] N. Li, Y. Zheng, Novel magnesium alloys developed for biomedical application: A review, J. Mater. Sci. Technol. 29 (2013) 489-502. [28] G. Song, S. Song, A possible biodegradable magnesium implant material, Adv. Eng. Mater. 9 (2007) 298-302. [29] H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J. Biomed. Mater. Res. 62 (2002) 175-184. [30] J. Vormann, Magnesium: nutrition and metabolism, Mol. Aspects Med. 24 (2003) 27-37. [31] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials 26 (2005) 3557-3563. [32] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials 30 (2009) 484-498. [33] N. Birbilis, M.A. Easton, A.D. Sudholz, S.M. Zhu, M.A. Gibson, On the corrosion of binary magnesium-rare earth alloys, Corros. Sci. 51 (2009) 683-689. [34] S. Shadanbaz, G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomater. 8 (2012) 20-30. [35] H.W. Denissen, K. de Groot, P.Ch. Makkes, A. vanden Hooff, P.J. Klopper, Tissue response to dense apatite implants in rats, J. Biomed. Mater. Res. 14 (1980) 713-721. [36] L. Sun, C.C. Berndt, K.A. Gross, A. Kucuk, Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review, J. Biomed. Mater. Res. 58 (2001) 570–592. [37] K. van Dijk, H.G. Schaeken, J.G.C. Wolke, J.A. Jansen, Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings, Biomaterials 17 (1996) 405-410. [38] C.F. Koch, S. Johnson, D. Kumar, M. Jelinek, D.B. Chrisey, A. Doraiswamy, C. Jin, R.J. Narayan, I.N. Mihailescu, Pulsed laser deposition of hydroxyapatite thin films, Mater. Sci. Eng. C 27 (2007) 484-494. [39] B. Mavis, A.C. Tas, Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates, J. Am. Ceram. Soc. 83 (2000) 989-991. [40] S. Hiromoto, M. Tomozawa, Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution, Surf. Coat. Technol. 205 (2011) 4711-4719. [41] X.B. Chen, N. Birbilis, T.B. Abbott, A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium, Corros. Sci. 53 (2011) 2263-2268. [42] Y. Su, G. Li, J. Lian, A chemical conversion hydroxyapatite coating on AZ60 magnesium alloy and its electrochemical corrosion behaviour, Int. J. Electrochem. Sci. 7 (2012) 11497-11511. [43] Y. Zhang, G. Zhang, M. Wei, Controlling the biodegradation rate of magnesium using biomimetic apatite coating, J. Biomed. Mater. Res. B 89 (2009) 408-414. [44] J.E. Gray-Munro, M. Strong, The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31, J. Biomed. Mater. Res. 90 (2009) 339-350. [45] Y.W. Song, D.Y. Shan, E.H. Han, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application, Mater. Lett. 62 (2008) 3276-3279. [46] C. Wen, S. Guan, L. Peng, C. Ren, X. Wang, Z. Hu, Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications, Appl. Surf. Sci. 255 (2009) 6433-6438. [47] Y. Song, S. Zhang, J. Li, C. Zhao, X. Zhang, Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior, Acta Biomater. 6 (2010) 1736-1742. [48] H.X. Wang, S.K. Guan, X. Wang, C.X. Ren, L.G. Wang, In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process, Acta Biomater. 6 (2010) 1743-1748. [49] M. Jamesh, S. Kumar, T.S.N. Sankara Narayanan, Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications, J. Coat. Technol. Res. 9 (2012) 495-502. [50] S.K. Yen, T.Y. Huang, Characterization of the electrolytic ZrO2 coating on Ti-6A1-4V, Mater. Chem. Phys. 56 (1998) 214-221. [51] S.K. Yen, Characterization of Electrolytic ZrO2 Coating on AISI 316L, J. Electrochem. Soc. 146 (1999) 1392-1396. [52] S.K. Yen, M.J. Guo, H.Z. Zan, Characterization of electrolytic ZrO2 coating on Co-Cr-Mo implant alloys of hip prosthesis, Biomaterials 22 (2001) 125-133. [53] H.W. Kim, S.Y. Lee, C.J. Bae, Y.J. Noh, H.E. Kim, H.M. Kim, J.S. Ko, Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer, Biomaterials 24 (2003) 3277-3284. [54] L. Gal-Or, I. Silberman, R. Chaim, Electrolytic ZrO2 coatings: I. Electrochemical aspects, J. Electrochem. Soc. 138 (1991) 1939-1942. [55] S.K. Yen, Mechanism of electrolytic ZrO2 coating on commercial pure titanium, Mater. Chem. Phys. 63 (2000) 256-262. [56] ASTM D3359-09, Standard test methods for measuring adhesion by tape test, ASTM, Philadelphia, PA, 2009. [57] ASTM C633-01, Standard test method for adhesion or cohesion strength of thermal spray coatings, ASTM, Philadelphia, PA, 2008. [58] ASTM G31-72, Standard practice for laboratory immersion corrosion testing of metals, ASTM, Philadelphia, PA, 2004. [59] M.J. Wang, C.F. Li, S.K. Yen, Electrolytic MgO/ZrO2 duplex-layer coating on AZ91D magnesium alloy for corrosion resistance, Corros. Sci. 76 (2013) 142-153. [60] M.C. Kuo, S.K. Yen, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature, Mater. Sci. Eng. C 20 (2002) 153-160. [61] A. Yamamoto, S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Mater. Sci. Eng. C 29 (2009) 1559-1568. [62] Y. Xin, T. Hu, P.K. Chu, Influence of Test Solutions on In Vitro Studies of Biomedical Magnesium Alloys, J. Electrochem. Soc. 157 (2010) C238. [63] Y. Xin, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomater. 7 (2011) 1452-1459. [64] International Organization for Standardization. ISO 10993-5: biological evaluation of medical devices part 5: tests for cytotoxicity: in vitro methods. 2009. [65] G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato, In vitro evaluation of cell/biomaterial interaction by MTT assay, Biomaterials 14 (1993) 359-364. [66] S.K. Yen, H.C. Hsu, Nano-crystallization and surface analysis of electrolytic ZrO2 coatings on Co-Cr alloy, J. Mater. Sci. Mater. Med. 12 (2001) 497-501. [67] Y. Gao, Y. Masuda, H. Ohta, K. Koumoto, Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution, Chem. Mater. 16 (2004) 2615-2622. [68] C. Huang, Z. Tang, Z. Zhang, Differences between zirconium hydroxide (Zr(OH)4·nH2O) and hydrous zirconia (ZrO2·nH2O), J. Am. Ceram. Soc. 84(7) (2001) 1637-1638. [69] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, second ed., National Association of Corrosion Engineers (NACE), Houston, Tex., 1974. [70] ASTM G3-89, Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing, ASTM, Philadelphia, PA, 2009. [71] Y. Zhang, C. Yan, F. Wang, W. Li, Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution, Corros. Sci. 47 (2005) 2816-2831. [72] A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corros. Sci. 50 (2008) 823-834. [73] J. Liang, P.B. Srinivasan, C. Blawert, W. Dietzel, Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation, Corros. Sci. 51 (2009) 2483-2492. [74] S.J. Xia, R. Yue, R.G. Rateick, V.I. Birss, Electrochemical studies of AC/DC anodized Mg alloy in NaCl solution, J. Electrochem. Soc. 151 (3) (2004) B179-B187 [75] J. Liang, P.B. Srinivasan, C. Blawert, W. Dietzel, Influence of pH on the deterioration of plasma electrolytic oxidation coated AM50 magnesium alloy in NaCl solutions, Corros. Sci. 52 (2010) 540-547. [76] G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1 (1999) 11-13. [77] F. Liu, D. Shan, Y. Song, E.H. Han, W. Ke, Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation, Corros. Sci. 53 (2011) 3845-3852. [78] A. Bigi, G. Falini, E. Foresti, A. Ripamonti, M. Gazzano, N. Roveri, Magnesium influence on hydroxyapatite crystallization, J. Inorg. Biochem. 49 (1993) 69-78. [79] J. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, A TEM investigation of naturally formed oxide films on pure magnesium, Corros. Sci. 39 (1997) 1397-1414. [80] ASTM G102-89, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, ASTM, Philadelphia, PA, 2010. [81] Y. Xin, K. Huo, H. Tao, G. Tang, P.K. Chu, Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment, Acta Biomater. 4 (2008) 2008-2015. [82] International Organization for Standardization. ISO 13779-2: Implants for surgery - Hydroxyapatite - Part 2: Coatings of hydroxyapatite. 2008. [83] Y. Xin, K. Huo, T. Hu, G. Tang, P.K. Chu, Corrosion products on biomedical magnesium alloy soaked in simulated body fluids, J. Mater. Res. 24 (2009) 2711-2719. [84] P. Roach, D. Farrar, C.C. Perry, Interpretation of protein adsorption: surface-induced conformational changes, J. Am. Chem. Soc. 127 (2005) 8168-8173. [85] X.N. Gu, Y.F. Zheng, L.J. Chen, Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg–Ca, AZ31, AZ91 alloys, Biomed. Mater. 4 (2009) 065011. [86] N.J. Hallab, C. Vermes, C. Messina, K.A. Roebuck, T.T. Glant, J.J. Jacobs, Concentration‐and composition‐dependent effects of metal ions on human MG‐63 osteoblasts, J. Biomed. Mater. Res. 60 (2002) 420-433. [87] A. Yamamoto, R. Honma, M. Sumita, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, J. Biomed. Mater. Res. 39 (1998) 331-340. [88] H. Zreiqat, C. Howlett, A. Zannettino, P. Evans, G. Schulze‐Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium‐stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, J. Biomed. Mater. Res. 62 (2002) 175-184. [89] R.L. Du, J. Chang, S.Y. Ni, W.Y. Zhai, J.Y. Wang, Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics, J. Biomater. Appl. 20 (2006) 341-360. [90] R. Rej, J.P. Bretaudiere, Effects of metal ions on the measurement of alkaline phosphatase activity, Clin. Chem. 26 (1980) 423-428. [91] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991) 1487-1510
摘要: In order to promote the corrosion resistance of magnesium alloy, an MgO/ZrO2 duplex-layer coating has been prepared on AZ91D magnesium alloy as a protective film against corrosion by a two-step fabrication process of electrodeposition and annealing treatment in the study. Owing to the chemical bonding formed after the condensation of precursory hydroxides, the adhesion strength, thickness and compactness of MgO coating on the substrate are significantly enhanced by the intermediate ZrO2 layer which prevents the formation of corrosion product Mg2(OH)3Cl·4H2O. As a result, the MgO/ZrO2 duplex-layer coated specimen reveals relatively high corrosion resistance and superior stability in 3.5 wt % NaCl solution with respect to the MgO single-layer coated specimen. Recently, magnesium alloys have been further proposed as a new class of biodegradable metallic biomaterials. However, their corrosion resistance restricts further applications in medical devices. In order to control the degradation rate and enhance the biocompatibility of magnesium alloys, calcium phosphate (CaP) top layer with ZrO2 interlayer composing CaP/ZrO2 coating was carried out on AZ91D magnesium alloy by electrodeposition and annealing. ZrO2 interlayer makes unstable dicalcium phosphate anhydrous (DCPA) for CaP single layer transform into stable hydroxyapatite (HA) for CaP/ZrO2 composite coating and enhance the adhesion strength of CaP from 12.1 to 24.4 MPa, owing to OH bonds provided by the precursory of intermediate layer Zr(OH)4 condensed with OH bonds in HA and on Mg alloy surface after annealing, also leading to a dense and compact under layer which effectively reduces the corrosion current density from 84.30 to 0.49 μA/cm2 in potentiodynamic polarization tests and weight increase in immersion tests. Besides, the in vitro cell assays demonstrate that CaP/ZrO2 and ZrO2 coatings can enhance more cell adhesion and proliferation whereas cell numbers on uncoated specimen decreases with culture time due to the corrosion accompanied with evolution of hydrogen, the rise in Mg2+ and pH of solution near the specimen surface, and the formation of corrosion products, revealing that CaP/ZrO2 or ZrO2 coated AZ91D magnesium alloy can be a promising candidate as a biodegradable implant.
為了提升鎂合金之抗蝕性,本研究利用兩個電解沉積步驟及退火處理,於AZ91D鎂合金上披覆MgO/ZrO2雙層鍍層作為抗腐蝕保護層。藉由ZrO2中間層的披覆,其前驅物Zr(OH)4所具有之大量OH官能基與Mg(OH)2及鎂合金表面之OH官能基於退火後,進行縮合反應形成強化學鍵結,大幅地提升MgO之附著強度、厚度及結構密實度,同時防止Mg2(OH)3Cl·4H2O腐蝕產物的產生,故相對於MgO單層鍍層披覆之鎂合金,MgO/ZrO2雙層鍍層在3.5 wt %氯化鈉水溶液中展現出更高之抗蝕能力及化學穩定性。而近年來鎂合金被視為新一世代之可降解金屬生醫材料,其低抗蝕性卻限制了進一步的應用,為了控制鎂合金降解速率並提高其生物相容性,本研究亦利用電解沉積方法及退火處理,於AZ91D鎂合金表面上披覆由ZrO2內層及磷酸鈣鹽(CaP)表層所組成之CaP/ZrO2複合鍍層。由於ZrO2內層的披覆,可使CaP鍍層中的不穩定相dicalcium phosphate anhydrous (DCPA)轉變成穩定相hydroxyapatite (HA),並將CaP在基材上之附著強度由12.1 MPa提升至24.4 MPa,推測是因其前驅物Zr(OH)4所具有之大量OH官能基與HA及鎂合金表面之OH官能基經退火後產生縮合反應,同時也導致緻密緊實之內層鍍層的產生,有效地將動態極化測試中所測得的腐蝕電流密度由84.30μA/cm2降低至0.49 μA/cm2,且在浸泡測試中呈現重量增加之結果。此外,體外測試證實CaP/ZrO2及ZrO2鍍層可促進細胞貼附與增殖,反之未披覆鍍層之基材因腐蝕而伴隨氫氣產生、接近試片表面溶液之pH值與鎂離子的升高及腐蝕產物的產生,導致細胞貼附量的下降,結果顯示經CaP/ZrO2或ZrO2鍍層披覆之AZ91D鎂合金深具潛力可做為降解性植入材之一種選項。
URI: http://hdl.handle.net/11455/91951
其他識別: U0005-2611201303482100
文章公開時間: 2016-11-27
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.