Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91954
標題: 電化學製備 α-Fe2O3、LiCo2O4和 LiNiPO4塗層應用於薄膜鋰離子二次電池
α-Fe2O3, LiCo2O4, LiNiPO4 coatings prepared by electrochemical method applied in thin film lithium-ion secondary batteries
作者: 謝文瑜
Wen-Yu Shieh
關鍵字: 陰極電化學法
氧化鐵
氧化鈷
磷酸鋰鎳
cathodic electrochemical method
α-Fe2O3
Lithium cobalt oxide
LiNiPO4
引用: 1. M. Wakihara, Material Science and Engineering, R33 109-134 (2001). 2. Walter A. van Schalkwijk, Bruno Scrosati, Kluwer Academic Publishers, New York, Boston, p. 1, 2002. 3. Gold Peak Industries Ltd., Lithium Ion technical handbook. 4. J. M. Tarascon, M. Armand, Nature, Vol. 414 (2001) p. 359. 5. D. W. Murphy, Mat. Res. Bull. 13, (1978), p. 1395. 6. M. Lazzari, B. Scrosati, J. Electrochem. Soc., 127 (1980), p. 773. 7. Will, F. G., US patent 3874958 (1975). 8. Percheron-Guegan, A., Achard, J. C., Sarradin, J., French patent 7516160 (1975). 9. F. R. Kalhammer, A. Kozawa, C. B. Moyer, B. B. Owens, Interface 1 (1996) p. 33. 10. Y. Nishi, K. Katayama, Extended Abstracts of the 8th Int. Mtg. on Lithium batteries, Nagoya, Japan, (1996), p. 13. 11. K. Brandt, Extended Abstracts of the 8th Int. Mtg. on Lithium Batteries, Nagoya, Japan, (1996), p. 9. 12. B. Scrosati, Nature 373 (1995) p. 557. 13. F. Orsini, A. du Pasquier, B. Beaudouin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. de Beer, P. Notten, J. Power Sources 81–82, p. 918 (1999). 14. http://www.solicore.com/applications.html. 15. T. Handa, S. Shoji, S.Ike, S. Takeda and T. Sekiguchi, 1997 International onference on Sloid-State Sensors and Actuators, Chicago, June 16- 19 (1997). 16. J. B. Bates, G. R. Gruzalski, N. J. Dudney, and C. F. Luck, Solid State Division, ak Ridge National Laboratory Oak Ridge, Tennessee 37831. 17. W. Y. Liu, Z. W. Fu, Q. Z. Qin, Thin Solid Films 515 (2007) 4045. 18. C. L. Li, B. Zhang, and Z. W. Fu, J. Electrochem. Soc, 153 (9) (2006) E160. 19. S. D. Jones, J. R. Akridge, Solid State Ionics, 86-88 (1996) 1291. 20. B. J. Neudecker, R. A. Zuhr, J. B. Bates, J. Power Sources, 81–82 (1999) 27. 21. J. Scfoonman, E. M. Kelder, J. Power Sources, 68 (1997) 65. 22. R. P. Raffaelle, J. D. Harris, D. Hehemann , D. Scheiman, G. Rybicki, A. F. Hepp, J. Power Sources, 89 (2000) 52. 23. J. Schwenzel, V. Thangadurai, W. Weppner, J. Power Sources, 154 (2006) 232. 24. M. P. Vinod, D. Bahnemann, J. Solid State Electrochem., 6 (2002) 498. 25. N. Kuwata, R. Kumar, K. Toribami, T. Suzuki, T. Hattori, J. Kawamura, Solid State Ionics, 177 (2006) 2827. 26. P. G. Balakrishnan, R. Ramesh, T. P. Kumar, J. Power Sources 155 (2006) p. 401. 27. R. Selim, and P. Bro, J. Electrochem. Soc., 121 (1974) p. 1467. 28. F.W. Dampier, and S.B. Brummer, Electrochim. Acta, 22 (1977) p. 75. 29. M. Nishijima, T. Kagohashi, M. Imanishi, Y. Takeda, O. Yamamoto, S. Kondo, Solid State Ionics, 83 (1996) p. 107. 30. T. Shodai, S. Okada, S. Tobishima, J. Yamaki, Solid State Ionics, 86-87 (1996) p. 785. 31. T. Shodai, Y. Sakurai, T. Suzuki, Solid State Ionics, 122 (1999) p. 85. 32. C. J. Wen, and R. A. Huggins, J. Electrochem. Soc., 128 (1981) p. 1181. 33. C. J. Wen, and R. A. Huggins, Mat. Res. Bull., 15 (1980) p. 1225 34. W. Weppner, R. A. Huggins, J. Electrochem. Soc., 124 (1977) p. 1569. 35. W. Weppner, R. A. Huggins, J. Solid State Chem., 22 (1977) p. 297. 36. M.L. Saboungi, J. Electrochem. Soc., 126 (1979) p. C322. 37. R. Nesper, Prog. Solid State Chem., 20 (1990) p. 1. 38. A. H. Whitehead, J.M. Elliott, J.R. Owen, J. Power Sources, 81-82 (1999) p. 33. 39. J. O. Besenhard, J. Yang, M. Winter, J. Power Sources 68 (1997) p. 87. 40. C. F. Li, W. H. Ho, C. S. Jiang, S. K. Yen, J. Power Sources 196 (2011) 768-775. 41. W. H. Ho, C. F. Li, H. C. Liu, S. K. Yen, J. Power Sources, 175 (2008) p. 897. 42. W. H. Ho, H. C. Liu, H. C. Chen, S. K. Yen, Surface and Coatings Technology 201 (2007) p.7100. 43. H. C. Liu and S. K. Yen, J. Power Sources, 166 (2007) p. 478. 44. Y. N. Nuli, S. L. Zhao, Q. Z. Qin, J. Power Sources, 114 (2003) p. 113. 45. http://www.phy.cmich.edu/people/petkov/nano.html. 46. J. B. Bates, G.R. Gruzalski, N.J. Dudney, C.F. Luck, and X.H. Yu, Solid State Technology, 38 (1993) p. 59. 47. K. Mizushima, P.C. Jones, P.C. Wiseman, and J.B. Goodenough, Mater. Res. Bull., 15 (1980) p. 783. 48. T. Nagaura, and K. Tazawa, Prog. Batt. Sol. Cells, 9 (1990) p. 20. 49. W. Ebner, D. Fouchard, and L. Xie, Solid State Ionics, 69 (1994) p. 238. 50. J.R. Dahn, U.V. Sacken, M.R. Jukow, and H.A. Janaby, J. Electrochemical Society, 138 (1991) p. 2207. 51. T. Ohzuku, A. Ueda, and M. Nagayama, J. Electrochemical Society, 140 (1993) p. 1862. 52. M. Broussely, F. Perton, P. Biensan, J.M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, J. P. Peres, 54 (1995) p. 109. 53. A. Robert Armstrong, Peter G. Bruce Nature 381, (1996) p. 499. 54. D. Ahn, and M. Song, J. The Electrochemical Society, 147 (2000) p. 874. 55. A. Rougier, P. Gravereau, and C. Delmas, J. Electrochemical Society, 143 (1996) p. 1168. 56. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, J. Electrochemical Society, 143 (1996) p. 1114. 57. H. Huang, and P.G. Bruce, J. The Electrochemical Society, 141 (1994) p. L76. 58. H. Huang, and P.G. Bruce, J. Power Sources, 54 (1995) p. 52. 59. A. Yamada, J. Solid State Chem. 122 (1995) p. 160. 60. T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 81(1999) 90. 61. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, Solid State Ionics 81 (1995) 167. 62. H. Kawai, M. Nagate, H. Tukamoto, A. R. West, J. Power Sources 81 (1999) 67. 63. K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 68 (1997) 604. 64. Y. E. Eli, S. H. Lu, M. A. Rzeznik, J. Electrochem. Soc.145 (1998) 3383. 65. G. T. K. Fey, W. Li, J. R. Dahn, J. Electrochem. Soc. 141 (1994) 2279. 66. R. Santhanam, B. Rambabu, J. Power Sources 195 (2010) 5442-5451. 67. G. T. K. Fey, J. R. Dahn, M. J. Zhang, W. Li, J. Power Sources 68 (1997) 549. 68. J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc. 150 (2003) A1394. 69. J. Barker, M. Y. Saidi, J. L. Swoyer, Electrochem. Solid State Lett. 6 (2003) A1. 70. S. Vivekanandhan, M. Venkateswarlu and N. Satyanarayana, Nanotech 2004 Conference Technical, 2004. 71. W. F. Howard, R. M. Spontiz, J. Power Sources 165 (2007) 887. 72. J. Wolfenstine, J. Read, J. L. Allen, J. Power Sources 163 (2007) 1070. 73. J. Wolfenstine, J. Allen, J. Power Sources 142 (2005) 389-390. 74. H. Huang, S. C. Yin, T. Kerr, L.F. Nazar, Adv. Mater. 14 (2002) 1525. 75. S. C. Yin, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 125 (2003) 10402. 76. J. Barker, M. Y. Saidi, US Patent, 5871866, 1999. 77. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188-1194. 78. G. Li, H. Azuma, M. Tohda, Electrochem. Solid-State Lett. 5 (2002) A135. 79. G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Energy Environ. Sci. 4 (2011) 1986-2002. 80. J. B. Goodenough, Y. Kim, Chem. Mater. 22 (2010) 587-603. 81. J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, Y. K. Sun, Chem. Mater. 16 (2004) 906-914. 82. R. Santhanam, B. Rambabu, J. Power Sources 195 (2010) 5442-5451. 83. H. Xia, Y. S. Meng, L. Lu, G. Ceder, J. Electrochem. Soc. 154 (2007) 737-A743. 84. A. G. Ritchie, J. Power Source 136 (2004) 285-289. 85. J. Schoonman, E. M. Kelder, J. Power Source 68 (1997) 65-68. 86. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407 (2000) 496. 87. A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk, Nat. Mater. 4 (2005) 366. 88. N. A. Goodshall, I. D. Raistric, R. A. Huggins, Res. Bull. 115 (1980) 561. 89. Z. Wang, D. Luan, S. Madhavi, C. M. Li, Chem. Comm., 47 (2011) 8061. 90. J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, J. Am. Chem. Soc., 132 (2011) 13162-13164. 91. D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche, J. M. Tarascon, J. Electrochem. Soc. 150 (2003) A133. 92. S. Y. Zeng, K. B. Tang, T. W. Li, J. Colloid Interf. Sci 312 (2007) 513-521. 93. J. J. Xu, G. Jain, Electrochem. Solid State Lett. 5 (2002) A152. 94. Y. Zhao, J. Li, Y. Ding, L. Guan, Chem. Common. 47 (2011) 7416-7418. 95. Q.Q. Xiong, Y. Lu, X.L. Wang?, C.D. Gu, Y.Q. Qiao, J.P. Tu, J. Alloys. Compd. 536 (2012) 219-225. 96. G. Wang, T. Liu, Y. J. Luo, Y. Zhao, Z. Y. Ren, J. B. Bai, H. Wang, J. Alloys. Compd. 509 (2011) L216-L220. 97. Z. Y. Wang, D. Y. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci. 5 (2012) 5252-5256. 98. Q. Zhu, N. Chen, F. Tao, Q. M. Pan, J. Mater. Chem., 22 (2012) 15894-15900. 99. C. Gong, D. Chen, X. Jiao, Q. Wang, J. Mater. Chem. 12 (2002) 1844. 100. D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz, J. M. Tarascon, J. Electronchem. Soc. 150 (2003) A1643. 101. H. G. Cha, C. W. Kim, Y. H. Kim, M. H. Jung, E. S. Ji, B. K. Das, J. C. Kim, Y. S. Kang. Thin Solid Films 517 (2009) 1853-1856. 102. J. R. Scheffe, A. Frances, D. M. King, X. Liang, B. A. Branch, A. S. Cavanagh, S. M. George, A. W. Weimer. Thin Solid Films 517 (2008) 1874-1879. 103. T. Sasaki, X. Zeng, N. Koshizaki, Mater. Res. Symp. Proc. 526 (1998) 67 (MRS). 104. J. A Glasscock, P. R. F. Barnes, I. C. Plumb, A. Bendavid, P. J. Martin, Thin Solid Films 516 (2008) 1716-1724. 105. J. Sarradin, M. Ribes, A. Guessous, K. Elkacemi, Solid State Ionics. 112 (1998) 35-40. 106. Q. Q. Xiong, J. P. Tu, Y. Lu, J. Chen, Y. X. Yu, Y. Q. Qiao, X.L. Wang, C. D. Gu, J. Phys. Chem. C 116 (2012) 6495-6502 107. X. Qian, X. Zhang, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, J. Nanopart. Res 2 (2000) 191. 108. W. H. Ho, S. K. Yen, J. Electrochem. Soc. 152 (2005) A506. 109. W. H. Ho, S. K. Yen, Solid-State Lett. 8 (2005) C134. 110. H. C. Liu, S. K. Yen, J. Power Source 159 (2006) 245. 111. H. C. Liu, S. K. Yen, J. Power Source 159 (2006) 245-248. 112. H. C. Liu, W. H. Ho, C. F. Li, S. K. Yen, J. Electrochem. Soc.155 (2008) E178-182. 113. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall Inc., 3rded, Chapter 5 (2001) p.170. 114. M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. W. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Func. Mater. 17 (2007) 2792-2799. 115. Y. N. P. Zhang, Z. Guo, P. Munroe, H. Liu, J. Power Source 184 (2008) 456-461. 116. D. Faria, D. L. A., S. V. Silva, M. T., D. Oliveira, J. Raman Spectroscopy, 28 (1997) 873- 878. 117. M. M. Thackeray, W. I. E. David, J. B. Goodenough, Solid State Chem. 55 (1984) 280. 118. M. M. Thackeray, W. I. E. David, J. B. Goodenough, Mater. Res. Bull. 17 (1982) 785. 119. Y. N. P. Zhang, Z. Guo, P. Munroe, H. Liu, J. Power Source 184 (2008) 456-461. 120. T. Nagura, paper presenteed at the 3nd Rechargeable Seminar, March 5-7, Deerfield Beach, FL, (1990). 121. . K. Ozawa, Solid State Ionics, 69 (1994) 212-221. 122. D. R. Sadoway, A. M. Mayes, MRS Bull., 27 (2002) 590-592. 123. G. A. Nazri, MRS Bull., 27 (2002) 628-631. 124. J. M. Tarascon, M. Armand., Nature, 414 (2001) 359-367. 125. R. J. Gummow, M. M. W. I. F. Thackeray, S. H. David, Mater. Res. Bull., 27 (1992) 327. 126. M. Antaya, K. Cearns, J. S. Preston, J. N. Reimers, J. R. Dahn, J. Appl., Phys., 76 (1994) 2779. 127. D. Larcher, M. R. Palac??n, G. G. Amatucci, J. M. Tarascon, J. Electrochem. Soc., 144 (1997) 408. 128. J. Kim, P. Fulmer, A. Manthiram, Mater. Res. Bull., 34 (1999) 571. 129. O. A. Brylev, O. A. Shlyakhtin, T. L. Kulova, A. M. Skundin, Y. D. Tretyakov, Solid State Ionics, 156 (2003) 291. 130. K. Mizhshima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull., 15 (1980) 783. 131. J. N. Reimers, J. R. Dahn, J. Electrochem. Soc., 139 (1992) 2091. 132. M. Yoshio, H. Tanaka, K. Tominaga, H. Noguchi, J. Power Sources, 40 (1992) 347. 133. G. G. Amatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc., 143 (1996) 1114. 134. M. M. Thackeray, The 186th Meeting, Electrochem. Soc. Symp., (1994) 10. 135. R. J. Gummow, M. M. Thackeray, Mat. Res. Bull., 27(1992)327. 136. R. J. Gummow, M. M. Thackeray, Solid State Ionics, 53-56(1992)681. 137. E. Rossen, J. N. Reimers, J. R. Dahn, Solid State Ionics, 62(1992)53. 138. R. J. Gummow, D. C. Liles, M. M. Thackeray, W. I. F. David, Mat. Res. Bull., 28 (1993)1177. 139. W. Y. Hsien, S. K. Yen, Surf. Coat. Techol., 2012. 140. Z. P. Xu, H. C. Zeng, J. Mater. Chem. 8 (1998) 2499-2506. 141. W. S. Yoon, K. B. Kim, J. Power Sources, 81-82 (1999) 517-523. 142. 29. C. S. Nimisha, M. Ganapathi, N. Munichandraiah, Vacuum, 83 (2009) 1001-1006. 143. K. Kariatsumari, Next-Gen Batteries Going All-Solid, 2010. 144. V. Koleva, E. Zhecheva, R. Stoyanova, J. Inorg. Chem. 2010, 4091-4099. 145. L. Dimesso, D. Becker, J. Solid Stste Electrochem (2012) 3791-3798. 146. M. Minakshi, P. Singh, D. Appadoo, Electrochimica Acta 56 (2011) 4356-4360. 147. W. Y. Shieh, T. C. Chang, S. K. Yen, J. Electrochemical Society, 160 (2013) A1128-A1133. 148. L. Dimesso, C. Spanheimer, W. Jaegermann, Solid State Sciences 14 (2012) 1372-1377.
摘要: The light, thin, short and small devices with environmental protection and safety should be demanded for 3C (communication, computer, and electronics consumer products) in the 21st century. For power resources, the thin film lithium batteries will play an important role on developing low-cost and high voltage applications. As a result, seeking a suitable electrode material would be mainly considered. In this study, the cathodic electrochemical method will be used to coat α-Fe2O3, Lithium cobalt oxide, and LiNiPO4 films on the 304 stainless steel substrate. The electrochemical deposition mechanisms, parameters and the characterization of films will be investigated. The results are drawn as following: 1. Through cathodic polarization tests, three major reactions were verified in FeCl3 aqueous solution. The XRD and TG/DTA diagrams indicated that the coating film was FeOOH, condensed into α-Fe2O3 at 250 °C, and crystallized into particle size 10 nm. The Fe2O3 deposited specimen revealed 1162 for the 1st, 881 for the 2nd, and 570 mAhg-1 for the 20th cycle. However, the reversible capacity was decreased with the increasing discharge/charge current density and cycle number, due to the coarsening of particle size increasing the diffusion path of Li+. 2. Through cathodic polarization tests, three major reactions were verified in LiNO3 and Co(NO3)2 aqueous solutions. The XRD and TG/DTA diagrams indicated that the coating film was Co(OH)2 ‧H2O and LiOH, condensed and further oxidized into nano-sized LiCo2O4 particle after annealed at 310℃, and further decomposed into HT-LiCoO2 and Co3O4 at 500 °C. The Cyclic voltammetry (CV) reveals the oxidation peaks at 3.75 V and 3.98 V, and the reduction peaks at 3.43 V and 3.89 V (vs. Li/Li+) for LiCo2O4 and LiCoO2, respectively. The charge/discharge test of LiCo2O4 shows a discharge plateau around 3.5 V and reveals a reversible capacity of 70 mAhg?1 at 10 μAcm?2 between 3.8 and 3.2 V (vs. Li/Li+). It has been originally prepared by electrochemical synthesis and subsequent annealing at low temperatures (≦310℃) which could provide a suitable choice for preparing thin film lithium ion batteries applied to flexible 3C electronic products of low-cost. 3. Through cathodic polarization tests, three major reactions were verified in LiNO3, NH4H2PO4 and Ni(NO3)2 aqueous solutions. The XRD and TG/DSC diagrams indicated that the coating film was Li3PO4 and Ni3(PO4)2?xH2O, dehydrated during annealing process and finally combined and reacted into LiNiPO4 after annealed at 600℃, where hydrated Ni3(PO4)2?xH2O is crystalline when x stoichiumetric. Cyclic voltammetry (CV) and discharge/charge cyclic tests reveal reversible oxidation peaks at 4.62 V and 4.8 V, and reduction peaks at 4.5 V, 4.67 V, and 4.72 V. In this study, LiNiPO4 has been originally prepared by electrochemical synthesis and subsequent annealing at lower temperatures than general process. Though it could provide a new choice for preparing high voltage lithium ion batteries, its reversibility should be further improved.
具輕、薄、短、小、環保與安全等性質之元件設計將是二十一世紀3C(通訊、資訊及消耗性電子產品)時代之主要趨勢,無疑的薄膜鋰電池在未來電力資源供應上扮演極重要的角色,尤其在低成本與高電位之應用下,開發適當的電極材料為現下最主要的考量。本研究擬利用陰極電化學法直接被覆氧化鐵(α-Fe2O3)、氧化鈷(LiCo2O4及LiCoO2)與磷酸鋰鎳(LiNiPO4)鍍膜於不銹鋼基材,並針對其電化學機構、製程參數及鍍層性質作有系統的分析與探討,結果如下所示: 1. 經陰極極化分析,氯化鐵水溶液中存在3個主要電化學反應。從XRD配合TG/DTA得知初鍍膜結構為FeOOH,並於250℃時相變化為晶粒10奈米的α-Fe2O3。若以此α-Fe2O3鍍層為薄膜鋰電池陰極材料,於第一及第二次放電電容量分別為1162、881 mAh/g,且隨著充放電循環次數增加至第20圈後,於晶粒粗化導致鋰離子傳導路徑增加的情況下,放電電容量仍保持於570 mAh/g。 2. 經陰極極化分析,硝酸鋰與硝酸鈷混合水溶液中存在3個主要電化學反應。進一步從XRD配合TGA/DTA結果得知其初鍍膜結構為Co(OH)2 ‧H2O及LiOH,並於310℃相變化成LiCo2O4,於500℃進一步相變化為LiCoO2與Co3O4,由循環伏安測試的結果得知,LiCo2O4薄膜的氧化、還原電位分別為3.75 V 及3.43 V (vs. Li / Li+),LiCoO2薄膜的氧化、還原電位分別則為3.98 V及3.89 V (vs. Li / Li+),其中LiCo2O4薄膜半電池在電壓3.2至3.8V之間以10 μA/cm2電流密度充放電試驗中,表現出可逆的平均電容量為70 mAhg-1,成功的以低溫、低成本(≦310?C)電化學方法製備,作為提供薄膜鋰電池在負極上另一選擇。 3. 經陰極極化分析,硝酸鋰、硝酸鎳及磷酸氫氨混合水溶液中存在3個主要電化學反應。從XRD配合TG/DSC得知初鍍膜結構為Ni3(PO4)2.xH2O 及 Li3PO4,經退火過程去除水份後,最後在600℃結合為LiNiPO4結構,過程中發現Ni3(PO4)2.xH2O為化學劑量比時呈現結晶狀態。若以此橄欖石LiNiPO4結構為薄膜鋰電池陰極材料(相對於Sn/Li2O為陽極、鋰金屬為參考電極),由循環伏安測試的結果得知,LiNiPO4薄膜的可逆氧化電位為4.62 V及4.8 V;還原電位為4.5 V、4.67 V及4.72 V。本研究成功的以電化學方法及較低的退火溫度製備LiNiPO4,作為提供鋰電池高電位負極材料未來的新選擇。
URI: http://hdl.handle.net/11455/91954
其他識別: U0005-2811201416192050
文章公開時間: 2017-08-31
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.