Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91956
標題: 電解沉積肝素複合鍍層於可降解鎂基材應用於心血管支架之研究
Electrolytic Heparin Loaded Composite Coatings on Biodegradable Magnesium for Stents
作者: 林呈叡
Cheng-Ruei Lin
關鍵字: 生物可吸收性支架
氧化鋯
磷酸鈣鹽
純鎂
明膠
肝素
absorbable stent
zirconia
calcium phosphate
pure magnesium
gelatin
heparin
引用: [1] H.C. Bucher, P. Hengstler, C. Schindler, G.H. Guyatt, Percutaneous transluminal coronary angioplasty versus medical treatment for non-acute coronary heart disease: meta-analysis of randomised controlled trials, BMJ: British Medical Journal, 321 (2000) 73. [2] S.J. Pocock, R.A. Henderson, A.F. Rickards, J.R. Hampton, S.B. King, C.W. Hamm, J. Puel, W. Hueb, J.J. Goy, A. Rodriguez, Meta-analysis of randomised trials comparing coronary angioplasty with bypass surgery, The Lancet, 346 (1995) 1184-1189. [3] G.W. Stone, S.G. Ellis, L. Cannon, J.T. Mann, J.D. Greenberg, D. Spriggs, C.D. O''Shaughnessy, S. DeMaio, P. Hall, J.J. Popma, Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial, Jama, 294 (2005) 1215-1223. [4] R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F.O. Tio, E. Wittchow, S. Hartwig, C. Harder, Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheterization and Cardiovascular Interventions, 68 (2006) 607-617. [5] P. Wenaweser, C. Rey, F.R. Eberli, M. Togni, D. T?ller, S. Locher, A. Remondino, C. Seiler, O.M. Hess, B. Meier, Stent thrombosis following bare-metal stent implantation: success of emergency percutaneous coronary intervention and predictors of adverse outcome, European heart journal, 26 (2005) 1180-1187. [6] P. Erne, M. Schier, T.J. Resink, The road to bioabsorbable stents: reaching clinical reality?, Cardiovascular and interventional radiology, 29 (2006) 11-16. [7] M. Peuster, P. Wohlsein, M. Br?gmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits, Heart, 86 (2001) 563-569. [8] A. Colombo, E. Karvouni, Biodegradable stents “fulfilling the mission and stepping away”, Circulation, 102 (2000) 371-373. [9] S. Saito, New horizon of bioabsorbable stent, Catheterization and Cardiovascular Interventions, 66 (2005) 595-596. [10] R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert, Progress and challenge for magnesium alloys as biomaterials, Advanced Engineering Materials, 10 (2008) B3-B14. [11] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27 (2006) 1728-1734. [12] H. Waizy, J.-M. Seitz, J. Reifenrath, A. Weizbauer, F.-W. Bach, A. Meyer-Lindenberg, B. Denkena, H. Windhagen, Biodegradable magnesium implants for orthopedic applications, Journal of Materials Science, 48 (2013) 39-50. [13] G. Song, S. Song, A possible biodegradable magnesium implant material, Advanced Engineering Materials, 9 (2007) 298-302. [14] J.B. Clark, Age hardening in a Mg-9 wt.% Al alloy, Acta Metallurgica, 16 (1968) 141-152. [15] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Research on an Mg–Zn alloy as a degradable biomaterial, Acta Biomaterialia, 6 (2010) 626-640. [16] N. CASES, Macrophagic myofasciitis associated with vaccine-derived aluminium, The Medical Journal of Australia, 183 (2005) 145-146. [17] P.C. Ferreira, K.d.A. Piai, A.M.M. Takayanagui, S.I. Segura-Mu?oz, Aluminum as a risk factor for Alzheimer''s disease, Revista latino-americana de enfermagem, 16 (2008) 151-157. [18] H. Ardelean, I. Frateur, P. Marcus, Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings, Corrosion Science, 50 (2008) 1907-1918. [19] S.K. Yen, M.J. Guo, H.Z. Zan, Characterization of electrolytic ZrO2 coating on Co–Cr–Mo implant alloys of hip prosthesis, Biomaterials, 22 (2001) 125-133. [20] H.C. Hsu, S.K. Yen, Evaluation of metal ion release and corrosion resistance of ZrO2 thin coatings on the dental Co–Cr alloys, Dental Materials, 14 (1998) 339-346. [21] S.K. Yen, Characterization of electrolytic ZrO2 coating on AISI 316L stainless steel, Journal of The Electrochemical Society, 146 (1999) 1392-1396. [22] S.K. Yen, T.Y. Huang, Characterization of the electrolytic ZrO2 coating on Ti-6A1-4V, Materials chemistry and physics, 56 (1998) 214-221. [23] M.J. Wang, C.F. Li, S.K. Yen, Electrolytic MgO/ZrO2 duplex-layer coating on AZ91D magnesium alloy for corrosion resistance, Corrosion Science, 76 (2013) 142-153. [24] D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger principles of biochemistry, Macmillan, 2008. [25] M. Vrolix, V.M. Legrand, J.H. Reiber, G. Grollier, M.J. Schalij, P. Brunel, L. Martinez-Elbal, M. Gomez-Recio, F.W. B?r, M.E. Bertrand, Heparin-coated Wiktor stents in human coronary arteries (MENTOR Trial), The American journal of cardiology, 86 (2000) 385-389. [26] W.J. van der Giessen, O. Sorop, P.W. Serruys, I. Peters-Krabbendam, H.M. van Beusekom, Lowering the dose of sirolimus, released from a nonpolymeric hydroxyapatite coated coronary stent, reduces signs of delayed healing, JACC: Cardiovascular Interventions, 2 (2009) 284-290. [27] S. Pezzatini, R. Solito, L. Morbidelli, S. Lamponi, E. Boanini, A. Bigi, M. Ziche, The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions, Journal of Biomedical Materials Research Part A, 76 (2006) 656-663. [28] M. Yaylao?lu, P. Korkusuz, ?. ?rs, F. Korkusuz, V. Hasirci, Development of a calcium phosphate–gelatin composite as a bone substitute and its use in drug release, Biomaterials, 20 (1999) 711-719. [29] M. Tsung, D.J. Burgess, Preparation and stabilization of heparin/gelatin complex coacervate microcapsules, Journal of pharmaceutical sciences, 86 (1997) 603-607. [30] R. Ambat, N.N. Aung, W. Zhou, Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy, Journal of applied electrochemistry, 30 (2000) 865-874. [31] N. Hara, Y. Kobayashi, D. Kagaya, N. Akao, Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions, Corrosion Science, 49 (2007) 166-175. [32] British Standard, ISO 10993-15 : Biological evaluation of medical devices Part 15: Identification and quantification of degradation products from metals and alloys, (2000). [33] P. Smith, A. Mallia, G. Hermanson, Colorimetric method for the assay of heparin content in immobilized heparin preparations, Analytical Biochemistry, 109 (1980) 466-473. [34] International Organization for Standardization, ISO 10995-5 : Biological evaluation of medical devices Part 5:Tests for in vitro cytotoxicity : in vitro methods, (2009). [35] G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato, In vitro evaluation of cell/biomaterial interaction by MTT assay, Biomaterials, 14 (1993) 359-364. [36] P.Y. Cheng(2012), Heparin Contained Multilayer Composite Coatings on NiTi Alloy for Cardiovascular Stents, Unpublished master dissertation, National Chung Hsing University. [37] S.K. Yen, C.M. Lin, Cathodic reactions of electrolytic hydroxyapatite coating on pure titanium, Materials chemistry and physics, 77 (2003) 70-76. [38] S.K. Yen, H.C. Hsu, Nano-crystallization and surface analysis of electrolytic ZrO2 coatings on Co-Cr alloy, Journal of Materials Science: Materials in Medicine, 12 (2001) 497-501. [39] C.F. Li, M.J. Wang, W.H. Ho, H.N. Li, S.K. Yen, Effects of electrolytic MgO coating parameters on corrosion resistance of AZ91D magnesium alloy, Journal of The Electrochemical Society, 158 (2011) C11-C16. [40] A. G102-89, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, ASTM, Philadelphia, PA, (2010). [41] Y. Song, D. Shan, R. Chen, E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corrosion Science, 51 (2009) 1087-1094. [42] D. Loganathan, H.M. Wang, L.M. Mallis, R.J. Linhardt, Structural variation in the antithrombin III binding site region and its occurrence in heparin from different sources, Biochemistry, 29 (1990) 4362-4368. [43] Y. Liu, X. Liu, X. Wang, Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study, Nanoscale Research Letters, 6 (2011) 1-11. [44] R.J. Liang(2005), The study of Gentamicin sulfate microparticle-hydrogels for topical therapy in excised wound, Unpublished master dissertation, National Defense Medical Center. [45] Z. Yang, P. Birkenhauer, F. Julmy, D. Chickering, J.P. Ranieri, H.P. Merkle, T.F. L?scher, B. Gander, Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation, Journal of controlled release, 60 (1999) 269-277.
摘要: Some limitations like the hypersensitivity reaction, the long-term impairment of endothelial response, and the late stent thrombosis for drug-eluting stents using percutaneous transluminal coronary angioplasty (PTCA) are still found. Though the degradable magnesium alloy used to construct an absorbable stent could be another candidate, the poor corrosion resistance is relatively a serious impediment against wider applications of magnesium alloys. In this study, the coatings of zirconia (ZrO2) bottom layer and calcium phosphate (CaP) top layer are carried out on pure magnesium specimens by electrochemical deposition and subsequent annealing, leading to the corrosion current density reduced from 13.3 to 3.86 μA/cm2 derived by potentiodynamic polarization tests in artificial blood plasma at 37 °C. Furthermore, calcium phosphate (CaP), gelatin (Gel) and heparin (Hep) are co-deposited on post CaP/ZrO2 coated specimens in order to fabricate the heparin sustaining release system for promoting the hemocompatibility of magnesium. Heparin loaded composite coatings are analyzed by X-Ray diffractometry (XRD), field emission scanning electron microscope (FESEM), focused ion beam system (FIB), toluidine blue colorimetric assay, UV-visible spectrometer, and indirect endothelial cell viability tests. The drug content increases from 243.56±55.18 μg/cm2 for single layer (CaP-Hep) to 484.19±19.26 μg/cm2 for multilayer (CaP-Gel-Hep/CaP-Hep/CaP/ZrO2) and the sustaining release of the latter lasting for more than 28 days compared with that of the former for 1 day in PBS solution. The cell viability, related to Mg2+ ions in medium extracts which are still toxic to endothelial cells at high concentrations, is 63 % for the uncoated, 97 % for the ZrO2 coated, and 110 % for the CaP/ZrO2 and CaP-Gel-Hep/CaP-Hep/CaP/ZrO2 coated specimens compared with 100 % for the negative control. All results indicate that ZrO2 coated, CaP/ZrO2 coated, and CaP-Gel-Hep/CaP-Hep/CaP/ZrO2 coated magnesium specimens are potential for biodegradable cardiovascular stents.
使用塗藥支架改善的血管成形術仍然存在著術後發炎反應、對血管內皮造成的長期傷害以及支架內再狹窄等風險。雖鎂合金具有較差的耐腐蝕性卻有機會成為生物可降解可吸收性支架的一項選擇。本研究先將氧化鋯(ZrO2)與磷酸鈣鹽(CaP)以電化學方法沉積至純鎂基材上,並進行了熱退火處理。動態極化試驗顯示這樣的表面處理能使鎂基材在37 °C下人工血漿中的腐蝕電流密度13.3下降至3.86 μA/cm2。接著將磷酸鈣鹽(CaP)、明膠(Gel)、肝素(Hep)複合沉積至材料上以建立穩定的肝素釋放系統與提高鎂基材的生物相容性。並以X光繞射儀(XRD)、場發射式電子顯微鏡(FESEM)、多功能聚焦?子束系統(FIB)、甲苯胺藍染色法(Toluidine blue)、分光光度計(UV visible spectrometer)以及間接內皮細胞活性測試(indirect endothelial cell viability tests)檢視含肝素複合鍍層之材料特性以及細胞毒性。結果顯示肝素載量可由單層複材(CaP-Hep)的243.56±55.18 μg/cm2提升至多層複材(CaP-Gel-Hep/CaP-Hep/CaP/ZrO2)的484.19±19.26 μg/cm2。且體外釋放由單層的1天增加為多層的可持續進行至28天以上。細胞活性試驗可發現對未經處理的基材細胞存活率為63 %,而經過ZrO2鍍層沉積可提升至97 %,CaP/ZrO2與CP-Gel-Hep/CaP-Hep/CaP/ZrO2複合鍍層則可再提升至110 %,此結果應與鍍層抗腐蝕效果的提升造成腐蝕電流密度的降低有關,導致基材鎂離子的釋出率下降,也顯示高濃度Mg2+仍對內皮細胞具毒性。由上述結果可說明含肝素複合鍍層之純鎂有機會作為應用於心血管支架的選擇之一。
URI: http://hdl.handle.net/11455/91956
其他識別: U0005-2811201416175781
文章公開時間: 2017-08-31
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.