Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91958
標題: 不同插入結構對氮化物藍紫光發光二極體效能提升之研究
Improvements of nitride-based blue and ultraviolet light-emitting diodes using various intermediate structures
作者: 林文禹
Wen-Yu Lin
關鍵字: 有機金屬氣相沉積法
紫外光發光二極體
藍光發光二極體
布拉格反射鏡
差排
光取出效率
內部量子效率
鎂摻雜成分輪廓
metal-organic chemical vapor deposition
ultraviolet light emitting diodes
blue light emitting diodes
distributed Bragg reflector
dislocation
light extraction efficiency
internal quantum efficiency
Mg doping profile
引用: 1.K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583-585, 2001. 2. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431-1433, 2002. 3. K. Hiramatsu, K. Nishiyama, K. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Recent progress in selective area growth and epitaxial lateral overgrowth of III-Nitrides: effects of reactor pressure in MOVPE growth,” Phys. Status Solidi A, vol. 176, pp. 535–543, 1999. 4. D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, pp. 288–290, 2005. 5. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc., vol. 153, pp. G765–G770, 2006 6. J.-H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee, “Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire,” IEEE Photon. Technol. Lett., vol. 20, pp. 1563-1565, 2008. 7. H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang and Solomon W. S. Chi, “Effects of lens shape on GaN grown on microlens patterned sapphire substrates by metalorganic chemical vapor deposition,” J. Electrochem. Soc., vol. 157, pp. H304-H307, 2010. 8. X. H. Huang, J. P. Liu, Y. Y. Fan, J. J. Kong, H. Yang, H. B. Wang, “Effect of patterned sapphire substrate shape on light output power of GaN-based LEDs,” IEEE Photon. Technol. Lett., vol. 23, pp. 944-946, 2011. 9. C.-H. Chiu, L. H. Hsu, C. Y. Lee, C. C. Lin, B. W. Lin, S. J. Tu, Y. H. Chen, C. Y. Liu, W. C. Hsu, Y. P. Lan, J. K. Sheu, T. C. Lu, G. C. Chi, H. C. Kuo, S. C. Wang, and C.Y Chang, “Light extraction enhancement of GaN-based light-emitting diodes using crown-shaped patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 24, pp. 1212-1214, 2012. 10. H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 95, pp. 221110-1, 2009. 11. C. Y. Cho, J. B. Lee, S. J. Lee, S. H. Han, T. Y. Park, J. W. Kim, Y. C. Kim and S. J. Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2,” Opt. Exp., vol. 18, pp. 1462–1468, 2010. 12. Y. C. Huang, C. F. Lin, S. H. Chen, J. J. Dai, G. M. Wang, K. P. Huang, K. T. Chen, and Y. H. Hsu, “InGaN-based light-emitting diodes with an embedded conical air-voids structure,” Opt. Exp., vol. 19, pp. A57–A63, 2011. 13. J. K. Sheu, S. J. Tu, Y. H. Yeh, M. L. Lee, and W. C. Lai , “Gallium nitride-based light-emitting diodes with embedded air voids grown on Ar-implanted AlN/sapphire substrate,” Appl. Phys. Lett., vol. 101, pp. 151103-1, 2012. 14. D. W. Lin, J. K. Huang, C. Y. Lee, R. W. Chang, Y. P. Lan, C. C. Lin, K. Y. Lee, C. H. Lin, P. T. Lee, G. C. Chi, and H. C. Kuo, Enhanced light output power and growth mechanism of GaN-based light-emitting diodes grown on cone-shaped SiO2 patterned template,” Journal of Display Technology, vol. 9, pp. 285-291, 2013. 15. D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. I. Nagahama and T. Mukai, “Watt-class high-output-power 365 nm ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., vol. 43, pp. 5945-5750, 2004. 16. S. C. Huang, K. C. Shen, D. S. Wuu, P. M. Tu, H. C. Kuo, C. C. Tu, and R. H. Horng, “Study of 375nm ultraviolet InGaN/AlGaN light-emitting diodes with heavily Si-doped GaN transition layer in growth mode, internal quantum efficiency, and device performance,” J. Appl. Phys., vol. 110, pp. 123102-1, 2011. 17. D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K. W. Fullmer, and W. G. Breiland, “Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence,” Appl. Phys. Lett., vol. 81, pp. 1940–1942, 2002. 18. A. Knauer, H. Wenzel, T. Kolbe, S. Einfeldt, M. Weyers, M. Kneissl and G. Tränkle, “Effect of the barrier composition on the polarization fields in near UV InGaN light emitting diodes,” Appl. Phys. Lett., vol. 92, pp. 191912–1, 2008. 19. P. M. Tu, C. Y. Chang, S. C. Huang, C. H. Chiu, J. R. Chang, W. T. Chang, D. S. Wuu, H. W. Zan, C. C. Lin, H. C. Kuo, and C.P. Hsu, “Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier,” Appl. Phys. Lett., vol. 98, pp. 211107–1, 2011. 20. P. Hinterdorfer and Y. F. Dufrêne, “Detection and localization of single molecular recognition events using atomic force microscopy”, Nature Methods, vol. 3, pp. 347-355, 2006. 21. F. J. Giessibl, “Advances in atomic force microscopy”, Rev. Mod. Phys., vol. 75, pp. 949-983, 2003. 22. D. K. Sckroder, “Chemical and Physical characterization in Semiconductor Material and Device Characterization,” John Wiley, pp. 513, 1990. 23. D. B. Williams and C. B. Carter, “The Instrument in Transmission Electron Microscopy”, New York: Plenum, pp. 141, 1996. 24. E. F. Schubert, Light-Emitting Diodes. Cambridge, U.K.: Cambridge Univ. Press, 2003. 25. A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York: Wiley, 2002. 26. S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitters Diodes. London, U.K. : Taylor & Francis, 2000. 27. J.-H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee, “Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone shape-patterned sapphire,” IEEE Photon. Technol. Lett., vol. 20, pp. 1563–1565, 2008. 28. H. C. Lin, R. S. Lin, J. I. Chyi, and C.M. Lee, “Light output enhancement of InGaN light-emitting diodes grown on masklessly etched sapphire substrates,” IEEE Photon. Technol. Lett., vol. 20, pp. 1621–1623, 2008. 29. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. C. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nano rod array patterned sapphire template,” Appl. Phys. Lett., vol. 93, pp. 081108-1–081108-3, 2008. 30. J. Park, J. K. Oh, K. W. Kwon, Y. H. Kim, S. S. Jo, J. K. Lee, and S.W. Ryu, “Improved light output of photonic crystal light-emitting diode fabricated by anodized aluminum oxide nano-patterns,” IEEE Photon. Technol. Lett., vol. 20, pp. 321–323, 2008. 31. M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G. Y. Jung, S. J. Park, J. W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett., vol. 92, pp. 251110-1–251110-3, 2008. 32. D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-based LEDs with phosphoric acid etched undercut sidewalls,” IEEE Photon. Technol. Lett., vol. 21, pp. 510–512, 2009. 33. J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett., vol. 15, pp. 18–20, 2003. 34. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near ultraviolet chip,” Jpn. J. Appl. Phys., vol. 41, pp. L371–L373, 2002. 35. T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based blue light emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 37, pp. L839–L841, 1998. 36. D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, pp. 288–290, 2005. 37. T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN single quantum- well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 5735–5739, 1999. 38. E. F. Schubert, Light-Emitting Diodes. Cambridge, U.K.: Cambridge Univ. Press, 2003, pp. 183. 39. K. Hiramatsu, K. Nishiyama, K. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda,“Recent progress in selective area growth and epitaxial lateral overgrowth of III-Nitrides: effects of reactor pressure in MOVPE growth,” Phys. Status Solidi A, vol. 176, pp. 535–543, 1999. 40. C. Y. Cho, M. K. Kwon, I. K. Park, S. H. Hong, J. J. Kim, S. E. Park, S. T. Kim, and S. J. Park, “High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask,” Opt. Exp., vol. 19, pp. A943–A948, 2011. 41. M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett., vol. 84, pp. 4041–4043, 2004. 42. M. Haino, M. Yamaguchi, H. Miyake, A. Motogaito, K. Hiramatsu, Y. Kamaguchi, N. Sawaki, Y. Iyechika, and T. Maeda, “Buried tungsten metal structure fabricated by epitaxial-lateral-overgrown GaN via low pressure metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 39, pp. L449–L452, 2000. 43. Y. Honda, Y. Iyechika, T. Maeda, H. Miyake, K. Hiramatsu, H. Sone, and N. Sawaki, “Crystal orientation fluctuation of epitaxial-lateral-overgrown GaN with W mask and SiO2 mask observed by transmission electron diffraction and X-Ray rocking curves,” Jpn. J. Appl. Phys., pp. L1299–L1302, 1999. 44. B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Specka, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., pp. 643–645, 1996. 45. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001, pp. 400. 46. Y. Yang, X. A. Cao, and C. H. Yan, “Investigation of the non-thermal mechanism of efficiency roll-off in InGaN light-emitting diodes,” IEEE Trans. Electron Device, vol. 55, pp. 1771–1775, 2008. 47. S. M. Kim, J. B. Kim, J. Jhin, J. H. Baek, I. H. Lee, and G. Y. Jung, “Optical and structural properties of InGaN-AlGaN ultraviolet light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 20, pp. 1911–1913, Dec. 2008. 48. C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “Enhancement of light extraction of GaN-based light-emitting diodes with a microstructure array,” Opt. Eng., vol. 43, pp. 1700–1701, 2004. 49. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett., vol. 89, pp. 161105, 2006. 50. E. F. Schubert, “Light-Emitting Diodes,” 2nd. chap. 12 and 13, Cambridge University Press, Cambridge, 2006. 51. S. Nakamura and S. F. Chichibu, “Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitters Diodes,” Taylor & Francis, London, 2000. 52. H. W. Huang, J. K. Huang, S. Y. Kuo, K. Y. Lee, and H. C. Kuo, “High extraction efficiency GaN-based light-emitting diodes on embedded SiO2 nanorod array and nanoscale patterned sapphire substrate,” Appl. Phys. Lett., vol. 96, pp. 263115-1, 2010. 53. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Peichen Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett., vol. 93, pp. 081108-1, 2008. 54. J. Y. Kim, M. K. Kwon, S. J. Park, S. H. Kim, and K. D. Lee, “Enhancement of light extraction from GaN-based green light-emitting diodes using selective area photonic crystal,” Appl. Phys. Lett., vol. 96, pp. 251103-1, 2010. 55. D. H. Kim, C. O Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, pp. 203508-1, 2005. 56. J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., vol. 90, pp. 263511-1, 2007. 57. H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, Y. Park, T. Y. Seong, “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers,” Appl. Phys. Lett., vol. 90, pp. 161110-1, 2007. 58. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc., vol. 153, pp. G765-G770, 2006. 59. H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang, and Solomon W. S. Chi, “Effects of lens shape on GaN grown on microlens patterned sapphire substrates by metallorganic chemical vapor deposition,” J. Electrochem. Soc., vol. 157, pp. H304-H307, 2010. 60. K. T. Lee, Y. C. Lee, and J. Y. Chang, “Light extraction enhancement of gallium nitride epilayers with stripe pattern transferred from patterned sapphire substrate,” J. Electrochem. Soc., vol.155, pp. H638-H641, 2006. 61. H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 95, pp. 221110-1, 2009. 62. W. C. Lai, Y. Y. Yang, L. C. Peng, S.W. Yang, Y. R. Lin, and J. K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures,” Appl. Phys. Lett., vol. 97, pp. 081103-1, 2010. 63. J. W. Lee, C. Sone, Y. Park, S. N. Lee, J. H. Ryou, R. D. Dupuis, C. H. Hong, and H. Kim, “High efficiency GaN-based light-emitting diodes fabricated on dielectric mask-embedded structures,” Appl. Phys. Lett., vol. 95, pp. 011108-1, 2009. 64. W. Y. Lin, D. S. Wuu, S. C. Huang, and R. H. Horng, “Enhanced output power of near-ultraviolet InGaN/AlGaN LEDs with patterned distributed Bragg reflectors,” IEEE Trans. Electron Devices, vol. 58, pp. 173-179, 2011. 65. H. W. Huang, J. K. Huang, K. Y. Lee, C. F. Lin, and H. C. Kuo, “Light-output-power enhancement of GaN-Based light-emitting diodes on an n-GaN layer using a SiO2 photonic quasi-crystal overgrowth,” IEEE Electron Device Lett., vol. 31, pp. 1431–1433, 2010. 66. W. C. Lai, L. C. Peng, M. N. Chang, S. C. Shei, Y. P. Hsu, and J. K. Sheu, “GaN based LED with embedded microlens-like structure,” J. Electrochem. Soc., vol. 156, pp. H976–H978, 2009. 67. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K.Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater., vol. 5, pp. 810–816, 2006. 68. S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 66, pp. 1249–1251, 1995. 69. T. Wang, Y. H. Liu, Y. B. Lee, Y. Izumi, J. P. Ao, J. Bai, H. D. Li, and S. Sakai,“Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes,” J. Cryst. Growth, vol. 235, pp. 177–182, 2002. 70. M. H. Lo, P. M. Tu, C. H. Wang, Y. J. Cheng, C. W. Hung, S. C. Hsu, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and C. M. Liu, “Defect selective passivation in GaN epitaxial growth and its application to light emitting diodes,” Appl. Phys. Lett., vol. 95, pp. 211103-1, 2009. 71. C. Huh, W. J. Schaff, L. F. Eastman, and S. J. Park, “Temperature dependence of performance of InGaN/GaN MQW LEDs with different indium compositions,” IEEE Electron Device Lett., vol. 25, pp. 61–63, 2004. 72. M. Shatalov, A. Chitnis, P. Yadav, M. F. Hasan, J. Khan, V. Adivarahan, H. P. Maruska, W. H. Sun, and M. Asif Khan, “Thermal analysis of flip-chip packaged 280 nm nitride-based deep ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 86, pp. 201109-1, 2005. 73. C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, “Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate,” IEEE Photon. Technol. Lett., vol. 19, pp. 780-782, 2007. 74. C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett., vol. 20, pp. 659-661, 2008. 75. S. C. Huang, D. S. Wuu, P. Y. Wu, W. Y. Lin, P. M. Tu, Y. C. Yeh, C. P. Hsu, and S. H. Chan, “Improved output power of 400-nm InGaN/AlGaN LEDs using a novel surface roughening technique,” J. Cryst. Growth, vol. 311, pp. 867–870, 2009. 76. K. Ueda, Y. Tsuchida, N. Hagura, F. Iskandar, K. Okuyama and Y. Endo, “high performance GaN thin films grown on sapphire substrates coated with a silica-submicron-sphere monolayer film,” Appl. Phys. Lett., vol. 92, pp. 101101-1, 2008. 77. Y. Kato, S. Kitamura, K. Hiramatsu and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 144, pp. 133–140, 1994. 78. K. Hirosawa, K. Hiramatsu, N. Sawaki, and I. Akasaki, “Growth of single crystal AlxGa1-xN films on Si substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 32, pp. L1039–1042, 1993. 79. K. Hiruma, T. Haga and M. Miyazaki, “Surface migration and reaction mechanism during selective growth of GaAs and AlAs by metalorganic chemical vapor deposition,” J. Cryst. Growth, vol. 102, pp. 717–724, 1990. 80. S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaarrs, T. Deguchi, T. Sota, and S. Nakamura, “Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth ,” Appl. Phys. Lett., vol. 74, pp. 1460-1463, 1999. 81. C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang, T. K. Ko, and C. F. Shen, “GaN-based LEDs output power improved by textured GaN/sapphire interface using in situ SiH4 treatment process during epitaxial growth,” IEEE J. Sel. Topics Quantum Electron., vol. 15, pp. 1275–1280, 2009. 82. Z. H. Feng and K. M. Lau, “Enhanced luminescence from GaN-based blue LEDs grown on grooved sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, pp. 1812–1814, 2005. 83. Z. H. Feng, Y. D. Qi, Z.D. Lu and K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,” J. Cryst. Growth, vol. 272, pp. 327–332, 2004. 84. Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates ,” IEEE Photon. Technol. Lett., vol. 18, pp. 1152–1154, 2005. 85. Yole development, “UV LED.” 2011. 86. M. Mori, A. Hamamoto, A. Takahashi, M. Nakano, N. Wakikawa, S. Tachibana, T. Ikehara, Y. Nakaya, M. Akutagawa and Y. Kinouchi, “Development of a new water sterilization device with a 365 nm UV-LED,” Med. Biol. Eng. Comput., vol. 45, pp. 1237-1241, 2007. 87. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near ultraviolet chip,” Jpn. J. Appl. Phys., vol. 41, pp. L371–L373, 2002. 88. D. Morita, M. Sano, M. Yamamoto, T. Murayama, S. Nagahama, and T. Mukai,“High output power 365nm ultraviolet light emitting diode of GaN-free structure,” Jpn. J. Appl. Phys., vol. 41, pp. L1434–L1436, 2002. 89. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. C. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett., vol. 93, 081108-1, 2008. 90. R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, and D. S. Wuu, “Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates,” J. Cryst. Growth, vol. 298, pp. 219–222, 2007. 91. S. Bohyama, H. Miyake, K. Hiramatsu, Y. Tsuchida, and T. Maeda, “Freestanding GaN substrate by advanced facet-controlled epitaxial lateral overgrowth technique with masking side facets,” Jpn. J. Appl. Phys., vol. 44, no. 1, pp. L24–L26, 2005. 92. Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, H. L. Zhou, and C. G. Fonstad,“Improvement of microstructural and optical properties of GaN layer on sapphire by nanoscale lateral epitaxial overgrowth,” Appl. Phys. Lett., vol. 88, pp. 211908-1, 2006. 93. S. C. Huang, D. S. Wuu, P. Y. Wu, S. H. Chan, “Improved output power of 380 nm InGaN-Based LEDs using a heavily Mg-doped GaN insertion layer technique.” IEEE J. Sel. Topics Quantum Electron., vol. 15, pp. 1132-1136, 2009. 94. M. Ikeda and S. Uchida, “Blue-violet laser diodes suitable for blu-ray disk,” Phys. Stat. Sol. (a), vol. 194, pp. 407-413, 2002. 95. M. Takeya, T. Tojyo, T. Asano, S. Ikeda, T. Mizuno, S. Goto, Y. Yabuki, S. Uchida and M. Ikeda, “High-power AlGaInN lasers,” Phys. Stat. Sol. (a), vol. 192, pp. 269-276, 2002. 96. S. N. Lee, H. S. Paek, J. K. Son, H. Kim, K. K. Kim, K. H. Ha, O. H. Nam and Y. Park, “Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices,” J. Electroceramic, vol. 23, pp. 406–409, 2009. 97. R. C. Tu, C. J. Tun, S. M. Pan, C. C. Chuo, J. K. Sheu, C. E. Tsai, T. C. Wang, and G. C. Chi, “Improvement of near-ultraviolet InGaN–GaN light-emitting diodes with an AlGaN electron-blocking layer grown at low temperature,” IEEE Photonics Technol. Lett., vol. 15, pp. 1342-1344, 2003. 98. M. Hansen, J. Piprek, P. M. Pattison, J. S. Speck, S. Nakamura, and S. P. DenBaars,“Higher efficiency InGaN laser diodes with an improved quantum well capping configuration,” Appl. Phys. Lett., vol. 81, pp. 4275-4277, 2002. 99. K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner,“Control of the Mg doping profile in III–N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys., vol. 97, pp. 104914-1, 2005. 100. K. Köhler, R. Gutt, J. Wiegert, and L. Kirste, “Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and AlxGa1-xN,” J. Appl. Phys., vol. 113, pp. 073514-1, 2013. 101. U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic, “Origin of defect-related photoluminescence bands in doped and nominally undoped GaN,” Phys. Rev. B, vol. 59, pp. 5561-5567, 1999. 102. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter, “Nature of the 2.8 eV photoluminescence band in Mg doped GaN,” Appl. Phys. Lett., vol. 72, pp. 1326-1328, 1998. 103. M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN–GaN ultraviolet light-emitting diode,” IEEE Photonics Technol. Lett., vol. 19, pp. 1880-1882, 2007. 104. J. S. Park, D. W. Fothergill, X. Zhang, Z. J. Reitmeier, J. F. Muth and R. F. Davis,“Effect of carrier blocking layers on the emission characteristics of AlGaN-based ultraviolet light emitting diodes,” Jpn. J. Appl. Phys., vol. 44, pp. 7254-7259, 2005. 105. S. Nakamura and T. Mukai, “High-quality InGaN films grown on GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L1457-1459, 1992. 106. R. Singh, R. J. Molnar, M. S. Unlu and T. D. Moustakas, “Intensity dependence of photoluminescence in GaN thin films,” Appl. Phys. Lett., vol. 64, pp. 336-338, 1994. 107. W. Grieshaber, E. F. Shubert, I. D. Goepfert, R. F. Karlicek, Jr., M. J. Schurman and C. Tran, “Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices,” J. Appl. Phys., vol. 80, pp. 4615-4622, 1996. 108. S. O. Kucheyev, M. Toth, M. R. Phililps, J. S. Williams, C. Jagadish and G. Li,“Chemical origin of the yellow luminescence in GaN,” J. Appl. Phys., vol. 91, pp. 5867-5874, 2002. 109. J. S. Colton, P. Y. Yu, L. Teo, E. R. Weber, P. Perlin, I. Grzegory and K. Uchida,“Selective excitation and thermal quenching of the yellow luminescence of GaN,” Appl. Phys. Lett., vol. 75, pp. 3273-3275, 1999. 110. J. Neugebauer and C. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 69, pp. 503-505, 1995. 111. G. Li, S. J. Chua, S. J. Xu, W. Wang, P. Li, B. Beaumont and P. Gibart, Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN,” Appl. Phys. Lett., vol. 74, pp.2821-2823, 1999. 112. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park,“ Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 183507-1, 2007. 113. H. Li, J. Kang, P. Li, J. Ma, H. Wang, M. Liang, Z. Li, Jing Li, X. Yi, and G. Wang,“Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer,” Appl. Phys. Lett., vol. 102, pp. 011105-1, 2013. 114. R. M. Lin, S. F. Yu, S. J. Chang, T. H. Chiang, S. P. Chang and C. H. Chen, “Inserting a p-InGaN layer before the p-AlGaN electron blocking layer suppresses efficiency droop in InGaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 101, pp. 081120-1, 2012. 115. J. S. Park, D. W. Fothergill, P. Wellentius, S. M. Bishop, J. F. Muth and R. F. Davis,“Origins of parasitic emissions from 353 nm AlGaN-based ultraviolet light emitting diodes over SiC substrates,” Jpn. J. Appl. Phys., vol. 45, pp. 4083-4086, 2006. 116. T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 5735-5739, 1999. 117. D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. I. Nagahama and T. Mukai, “Watt-class high-output-power 365 nm ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., vol. 43, pp. 5945-5750, 2004. 118. T. Y. Tsai, D. S. Wuu, M. T. Hung, J. H. Tu, S. C. Huang, R. H. Horng, W. Y. Chiang, and L. W. Tu, “Power enhancement of 410-nm InGaN-based light-emitting diodes on selectively etched GaN sapphire templates,” IEEE Trans. Electron Device, vol. 58, pp. 3962–3968, 2011. 119. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen- containing semiconductors,” J. Appl. Phys., vol. 94, pp. 3675– 3691, 2003. 120. T. Y. Park, C. H. Cho, I. K. Park, and S. J. Park, “Improved leakage current, output power, and electrostatic discharge characteristics of GaN LEDs by chemical etching,” Electrochem. Solid-State Lett., vol. 12, pp. D3-D6, 2009.
摘要: In this dissertation, metal-organic chemical vapor deposition system is used for fabricating blue and ultraviolet light-emitting diodes (UV LEDs) epitaxial layers with various intermediate structures in the wavelength of 460, 400, 380 nm. Moreover, we also develop the epitaxial structure of 365 nm LED with the inserting of an un-doped electron blocking layer (EBL) for enhancing optical output power. The optical output powers of UV LEDs are more sensitive to threading dislocation density (TDD) while their emitting wavelength became shorter. There are many extensive discussions on ex situ patterned SiO2 or SiN mask embedded in GaN films to reduce the TDD. Here, the patterned distributed Bragg reflector (PDBR) is used to replace the SiO2 mask in an attempt to reduce TDD in the epitaxial template and simultaneously enhance light extraction efficiency via the reflective behavior of the DBR mask. By using the first intermediate structure, the etching pits density (EPD) for GaN bulk without and with a PDBR mask were estimated to be 4.7 × 106 cm−2 and 6.3 × 105 cm−2, respectively, suggesting that TDD can be reduced using a PDBR mask. It was also found that the light output power of the PDBR LED was approximately 39% higher than that of the conventional LED in the wavelength of near 400 nm at an injection current of 20 mA. The second topic in this dissertation is the development of the LEDs with another intermediate structure of self-textured oxide mask (STOM-LED). It is expected that the use of corrugated STOM will enable strong light scattering thus increasing the light extraction, it will also reduce the density of dislocations that act as non-radiative recombination centers, degrading IQE performance. The EPD for GaN bulk without and with a STOM structure were estimated to be 3.9 × 107 cm−2 and 4.6 × 106 cm−2, respectively, suggesting that TDD can be reduced using a STOM structure. Notably, the light output power of the STOM-LED was approximately 43% higher than that of the conventional LED in the wavelength of around 460 nm at an injection current of 20 mA. On the other hand, the measured output power of the flip-chip LED (FCLED) and the STOM-FCLED at an injection current of 350 mA was 87.3 and 160.4 mW in the wavelength of near 380 nm, respectively. At this point, it represents an enhancement of 83% in the EQE of the STOM-FCLED, as compared with the FCLED. Due to lack of localized energy states in the MQWs active regions (which is believed to have stronger carrier confinement for radiative recombination), the performance of UV LEDs is more sensitive to the TDs in the epitaxial layer than one emitting in the blue. Furthermore, the much higher optical output power enhancement in UV LED than blue LED could be expected. Another study is the design of epitaxial structure of 365 nm LED. Especially focus on AlGaN:Mg EBL, we changed the Mg precursor flow rates during the growth of EBL and replace the partial Mg-doped AlGaN by various un-doped AlGaN (ud-EBL) thicknesses for a series of investigation on the PL and EL performance. When inserting an ud-EBL under proper thickness, a near 400% and 20% boost in light output power compare to that of with full Mg doping in AlGaN EBL were achieved for 365 nm and 375 nm LED, respectively. More specifically, these results indicate the 365 nm LED is much sensitive to Mg doping profile than that of higher indium-content nitride-based LED.
本博士論文使用有機金屬氣相沉積法藉由搭配插入不同中間層結構於氮化鎵磊晶層內,針對發光波長於 460,400,380 nm 的藍紫光發光二極體,進行磊晶片的製作與元件特性的研究;此外,包含設計插入一非摻雜的電子阻擋層於 375,365nm 的紫外光發光二極體磊晶結構,以提升其光輸出功率。 隨紫外光發光二極體的發光波長變短,貫穿式差排密度對其發光特性之影響則更趨明顯,當缺陷密度提高,紫外光發光二極體之內部量子效率將明顯地變低。使用 ex situ 圖案化氧化物或氮化物為貫穿式差排阻擋層,來降低缺陷密度之技術被廣泛的發表與討論,吾人將這個薄的氧化物或氮化物遮罩層置換成分佈式布拉格反射鏡,此一設計使得貫穿式差排密度降低,並且藉由層疊布拉格反射鏡的反射與散射行為來增加光取出率。此一中間層結構設計,缺陷密度由 4.7 × 106 cm−2降低至 6.3 × 105 cm−2,於 400 nm 發光二極體的實驗結果,其光輸出功率也得到了 39% 之提升。 吾人另外開發研究另一種中間層結構,為自粗化之氧化物遮罩鑲嵌於氮化鎵底層中,此一具高低起伏之氧化物遮罩有別於一般傳統的平坦式遮罩,由於此高低起伏的氧化物提供了更多折射係數差異之界面,因此可以產生更大的光子散射效果,改變其發射路徑,最終提高光取出。而此種中間層結構設計,使得缺陷密度由 3.9 × 107 cm−2 降低至 4.6 × 106 cm−2,意味著這樣的自粗化之氧化物遮罩仍能提供相似於傳統的平坦式遮罩,具有一個阻擋貫穿式差排的效果,於 460 nm 發光二極體的實驗結果,我們得到 47% 光輸出功率提升;於 380 nm 發光二極體的實驗結果,我們得到 83% 光輸出功率提升,使用相同中間層結構的氮化鎵模板,在 380 nm 卻有更大的光輸出功率提升 這個差異應該可以歸因於磊晶品質的改善,,使得紫外光發光二極體之內部量子效率相較於藍光發光二極體更能得到明顯的增加,進而表現在光輸出功率之提升。 另一個研究重點主要專注於 365 nm 的紫外光發光二極體磊晶結構設計。吾人藉由導入一適當厚度之非摻雜電子阻擋層,來控制鎂摻雜源分佈於電子阻擋層至量子井之成分輪廓,於 365 nm 發光二極體的實驗結果,我們可以得到 400% 光輸出功率提升 並且在老化方面有較佳之光衰減及較低之逆向漏電流性能 於 375 nm,;發光二極體的實驗結果,我們得到 20% 光輸出功率提升,使用相同厚度之非摻雜電子阻擋層,在 365 nm 相較於 375 nm 卻有更大光輸出功率提升,這個差異應該可以歸因於量子井內銦含量減少之緣故。當銦含量減少意味載子侷限化發光機制的缺乏,轉而由能帶躍遷來發光,因此,過多的雜質存在於量子井內將大大增加載子非輻射復合,使得光輸出功率降低。這樣的實驗結果,可以認知到紫外光發光波段的發光效率不僅對於差排密度相當敏感,對於存在於量子井中的雜質濃度相信也是至關重要。
URI: http://hdl.handle.net/11455/91958
其他識別: U0005-0706201516481400
文章公開時間: 2018-07-15
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.