Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91976
標題: Fe-30Mn-3C-1Si鑄態低磁性高硬度合金研究與開發
Research and development of an as-cast Fe-30Mn-3C-1Si alloy with low magnetic permeability and high hardness
作者: 石崑酉
Kun-Yu Shih
關鍵字: 鑄態
低磁性
高硬度
合金
as cast
low magnetic permeability
high hardness
alloy
引用: 1.何彬、丁占平,铁氧体磁芯模具的设计特点 ,中国,模具制造期刊 (2002).No2 第7期 2.泽繁树、李本川,新型高锰低磁钢,国外舰船技术,中国造船工程学会1980年 11期,ISSN:1003-1545 CN:41-1149/TB 3.谢敬佩,王文焱,李继文,王爱琴,赵永让,李洛利,耐磨奥氏体锰钢第六章, 北京科学出版社,(2008) ,ISBN:978-7-03-021308-2 4. E. Maurer, B. Strauss, Reichs patent Nr. 304126 and 304159, 1912. 5. B. D. Cullity, C. D. Graham ,Introduction to magnetic materials Second Edition, chapter 4, IEEE Press&Wiley, (2009). page 116 ISBN:978-0-471-47741-9 6.林文,中央造幣廠鎔軋工場主任,淺談不鏽鋼種類、磁性與安全性 , 衛生福利部食 品藥物管理署 7. Naming ceremony of fuel cell submarine “U 35” for the German Navy at HDW, ThyssenKrupp Marine Systems AG,15 th November 2011 8. Indigenised Production of Warship Building Steel and Weld Consumables 9.市川篤司, 村田清満, 穴見源八,松浦章夫,高マンガン鋼の浮上式鉄道構造物 への利用に関する研究,日本 鋼構造論文集 第1巻 第1号(1994年3月) 10.橋本涉一,浮上式鉄道ガイドウェイの研究と技術開発 , 日本 土木學會論文 集No.619/I-47,1-12,1999.4 11.市川篤司,超電導磁気浮上式鉄道の構造物における電磁気対策,日本 土木学 会誌 81(2), 14-17, 1996-02-15 12.毛存南 张太生 吴前芝,1.5T超导型磁共振扫描装置的安装及机房设计,中国 医疗设备信息 19卷2期 2004.2 13.閻正剛-能源與材料–地球未來最有潛力的新能源:氫能源之論文.2008 14.东涛、孟繁茂、傅俊岩,微合金化钢知識讲座,中國,中信微合金化技术公司, 2001年2月 15.張彥生,低溫鋼,中国大百科全书 第一版, 矿冶 (http://www.twwiki.com/wiki/低溫鋼) 16.李永惠 张晓明 龙达峰 刘俊,基于ansys的油井套管感应磁场有限元仿真, 石油机械第40卷第1期(2012年) 17.李长生,徐新芳,马彪,姚长贵,王敏,30Mn26Al4V 高锰无磁钢的实验研究, 中国科技论文第7卷第2期(2012 年2月) 18.孙景,鲁颖炜,郭小南,赵光远,梁福起,范明德,无磁硬质合金研究进展, 中国 磁性材料及器件期刊 2004年4月 19.楊棟賢,單向凝固高鉻白鑄鐵之顯微組織及耐磨耗性之研究,台灣科技大學 博士學位論文( 2011) 20.王一官,朱穗华,王建新,可用於磁性材料模具的高強度高硬度50Mn18Cr4VA 的開發, 磁性材料與器件第32卷第5期(2001年10月) 21.张丁非,彭建,杨静,张力,唐昌发,高錳無磁鋼ZG25 Mn1 8 Cr4的加工硬化機理, 重庆大学学报 (自然科学版)第29卷第11期(2006年11月) 22.余宣賦,程冠博,磁性陶瓷粉末, 科學發展408期(2006年12月) 23. 中國科普博覽, 磁學基礎-磁性的來源 (http://www.kepu.net.cn/gb/basic/magnetism/magnetabc/200306110013.html) 24. B. D. Cullity, C. D. Graham ,Introduction to magnetic materials Second Edition formula 1.16, IEEE Press&Wiley, (2009).page14 ISBN:978-0-471-47741-9 25.杜怡君,張毓娟,翁乙壬,蘇怡帆,陳世毓,梁哲銘,葉巧雯,吳信璋,卓育泯, 磁性基本特性及磁性材料應用,台灣大學化學系 26.江明彥,NiO/NiFe 2 O 4 奈米複合材料之合成與磁性之研究,南台科技大學 機械工程碩士論文(2006) page16 27. B. D. Cullity, C. D. Graham ,Introduction to magnetic materials Second Edition , IEEE Press&Wiley, (2009).page18 ISBN:978-0-471-47741-9 28. Microwaves101.com,Magnetic Materials,January 11, 2015 (http://www.microwaves101.com/encyclopedias/magnetic-materials) 29. B. D. Cullity, C. D. Graham ,Introduction to magnetic materials Second Edition formula 1.22, IEEE Press&Wiley, (2009). page17 ISBN:978-0-471-47741-9 30.金重勳,磁性技術手冊第三章,中華民國磁性技術協會(2002) ISBN:978-9-868-05100-3 31. S. Sgobba, Physics and measurements of magnetic materials, page 4, CERN-2010-004, pp. 39-63 ,arXiv:1103.1069 ,5 Mar 2011 32. H. Okamoto, Fe-Mn phase diagram;ASM Handbook - Vol 03 - Alloy Phase Diagrams, ASM International,(1992) 33. ASM Ready Reference: Thermal Properties of Metals (Product code 06702G), Chapter 2 Thermal Expansion, ASM International(2002), 34. The Engineering Toolbox, Thermal expansion of some common metals (http://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html) 35. Glenn Elert, Density of Steel,11 September 1997. (http://hypertextbook.com/facts/2004/KarenSutherland.shtml) 36.莊東漢,材料破損分析 第9章, 五南圖書出版公司,(2007) ISBN:978-957-11-4688-1 37. G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys, The Institute of Metals,London, (No. 4), 1988;ASM Handbook - Vol 03 - Alloy Phase Diagrams, ASM International,(1992) 38. Kaye and Laby, Coefficients of linear expansion of solids(2 December 2010) (http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html) 39. AISI316L,PX Group SA Corporation 40. Coefficient of thermal expansion for various materials at different temmperatures, Technical Report TR-18 ,Balseal(25 June 2004) 41. INCOLOY alloy 25-6HN , Special Metals Corporation( Oct. 2013) 42. Lyle R. Jenkins, Ductile Iron Society; and R.D. Forrest, Pechiney Electrometallurgie ,Division Fonderie ,ASM Handbook - Vol 01 - Properties and Selection Irons,Steels, and High Performance Alloys(01 Sep 2005) page 95 43. 316/316L STAINLESS STEEL DATA SHEET,AK Steel Corporation(2007) 44.304/304L STAINLESS STEEL DATA SHEET,AK Steel Corporation(2007) 45. 12/14% Manganese/Creusabro M , technical data , A J Marshall (Special Steels) Ltd 46. J.C. Avelar-Batista, E. Spain, J. Housden, G.G. Fuentes, R. Rebole′,R. Rodriguez, F. Montala′, L.J. Carreras, T.J. Tate, Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr–N coatings on AISI M2 steel and WC–Co substrates, Thin Solid Films, Volume 491, Issues 1–2, Pages 177–183(22 Nov 2005) 47.廖永賢,林庚甫,奈米科技材料新發現-氮化鉻,沙鹿高級工業職業學校, 台灣二OO五年國際科學展覽會工程學(2005) 48.許中杰,鐵-20錳-0.5碳合金之時效相變化研究,台灣科技大學材料科技研究所 碩士學位論文,(2008) 49.楊雅琇,超高錳含量高錳鋼之相變化研究, 台灣科技大學材料科技研究所碩士 學位論文,(2012) 50.蔡錫鐃,材料試驗 第12章, 新文京開發出版社(2004), ISBN: 957-8894-96-1
摘要: Low magnetism steel is commonly used for the application of transformer core, permanent magnet materials mold, concentrator and others. It is also a key material for precision machinery and automatic control .But low magnetism steel usually with low hardness,sometimes in special circumstances,low magnetism steel should provided with higher mechanical strength,and must improve by heat treatment or work hardening. This research focuses on the development of new cast steel (iron) that is with the characteristics of high hardness and Low magnetic permeability under as-cast status. The alloy mainly contains 3 wt % of carbon, 1 wt % of silicon, 30 wt % of manganese. The hardness of the as-cast material is between HRC 45 ~ 50; while the alloy’s relatively magnetic permeability (μr) is about 1.002125. Because this research alloy got high hardness and low magnetic permeability under as-cast status,so do not need heat treatment or work hardening process,It benefit of production costs , save energy and shorten the process. The principle of the alloy, make the base structure become austenite phase after melted steel cooling down, and growth large amount of ferromanganese carbide simultaneously. Since the austenite phase has characteristics of low magnetic, and ferromanganese carbide with high hardness, this dual-phase structure intersect distribution, as a result get a low magnetic with high hardness of both. This alloy in the as-cast, after subzero, after solution and aging, can maintain 44-50HRC of hardness, its relative permeability was still maintained at 1.002, showing not easy to change its hardness and magnetism by heat treatment . On the characterization of wear test, since this material contain high hardness ferromanganese carbide, grinding with tungsten carbide to got the coefficient of friction (COF) was 0.516, better than the M2 tool steel (COF=0.6) and HSS rapid steel (COF=0.85). Another via density test, obtained the density of the as-cast alloy is 7.59-7.64 g / cm3 at room temperature, compared to common of the 304 non-magnetic steel density 8.03 g / cm3, its about 5% lower. If the demand for use in large engineering project, can reduce the weight and volume of material
低磁性鋼常應用於電磁閥、變壓器鐵心、永磁材料成型模具及選礦機等,且是重要的精密機械及自動控制之關鍵材料。但低磁性鋼之硬度通常較低,由於某些特殊情況下,低磁性鋼需具備有較高之機械強度,故需經由熱處理或加工硬化等方式來改善。 本研究開發一種同時具備鑄態高硬度及鑄態低磁性合金,其化學成分包括3wt%碳、1wt%矽、30wt%錳及鐵。鑄態材料的硬度可達45~50HRC,而其相對導磁率(μr)約為1.0021。由於在鑄態狀況下,本材料已可具備低磁性高硬度的雙重效果,故不需再進行熱處理或加工硬化,對於加工成本、能源節約及縮短製程具有相當的助益。 本低磁性合金所利用之原理,是使基地組織於熔融冷卻後成為沃斯田體相,並同時生長大量之錳鐵碳化物。由於沃斯田體相具有低磁之特性,而錳鐵碳化物具備高硬度,此雙相組織相交分佈,即可獲得低磁性與高硬度兼具之材料。且本合金於鑄態,經深冷處理或固溶並時效處理後,均可保持44~50HRC之硬度值,其相對導磁率仍可維持於1.002,此結果顯示本合金不易因熱處理而影響其常溫硬度與磁性。 另一方面,由磨耗試驗的實驗結果得知,由於本材料富含高硬度錳鐵碳化物,其與碳化鎢對磨之磨擦係數(COF)為0.516,均優於高硬度M2模具鋼(COF=0.6)及HSS高速鋼(COF=0.85)。而密度試驗中,可得本鑄態合金之常溫密度為7.59-7.64 g/cm3,與常見之304無磁鋼密度8.03 g/cm3相比,約低5%。若運用在需求量大之工程結構,可降低材料使用之重量及體積。
URI: http://hdl.handle.net/11455/91976
其他識別: U0005-2201201501111400
文章公開時間: 2015-01-27
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.