Please use this identifier to cite or link to this item:
標題: Li-Al-CO3層狀雙氫氧化物(LDH)之螢光特性研究及其插層CO32-陰離子對螢光強度之影響
Fluorescent properties of Li-Al-CO3 layered double hydroxide (LDH) and the effect of intercalated anion CO32- on fluorescence intensity
作者: 劉聖捷
Sheng-Jie Liu
關鍵字: 鋰鋁層狀雙氫氧化物
Li-Al-CO3 layered double hydroxide
Photoluminescence Spectrometer
heat treatment
引用: [1] K.-H. Goh, T.-T. Lim, and Z. Dong, 'Application of layered double hydroxides for removal of oxyanions: A review,' Water Research, vol. 42, pp. 1343-1368,2008. [2] C. J. Serna, J. L. Rendon, and J. E. Iglesias, 'Crystal-chemical study of layered [Al 2 Li(OH) 6 ] PL X (super -) .nH 2 O,' Clays and Clay Minerals, vol. 30, pp. 180-184,1982. [3] F. Cavani, F. Trifirò, and A. Vaccari, 'Hydrotalcite-type anionic clays: Preparation, properties and applications,' Catalysis Today, vol. 11, pp. 173-301,1991. [4] F. Wong and R. G. Buchheit, 'Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings,' Progress in Organic Coatings, vol. 51, pp. 91-102,2004. [5] T. Kameda, S. Saito, and Y. Umetsu, 'Mg-Al layered double hydroxide intercalated with ethylene-diaminetetraacetate anion: Synthesis and application to the uptake of heavy metal ions from an aqueous solution,' Separation and Purification Technology, vol. 47, pp. 20-26,2005. [6] Y. Wang and H. Gao, 'Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs),' Journal of Colloid and Interface Science, vol. 301, pp. 19-26,2006. [7] D. L. Bish, 'Anion-exchange in takovite: applications to other hydroxide minerals,' Bull. Mineral, vol. 103, p. 5,1980. [8] S. Miyata, 'Anion-exchange properties of hydrotalcite-like compounds,' Clays Clay Miner, vol. 31, pp. 305-311,1983. [9] A. V. Besserguenev, A. M. Fogg, R. J. Francis, S. J. Price, D. O''Hare, V. P. Isupov, et al., 'Synthesis and Structure of the Gibbsite Intercalation Compounds [LiAl2(OH)6]X {X = Cl, Br, NO3} and [LiAl2(OH)6]Cl·H2O Using Synchrotron X-ray and Neutron Powder Diffraction,' Chemistry of Materials, vol. 9, pp. 241-247,1997. [10] M. Ogawa and S. Asai, 'Hydrothermal Synthesis of Layered Double Hydroxide−Deoxycholate Intercalation Compounds,' Chemistry of Materials, vol. 12, pp. 3253-3255,2000. [11] Z. P. Xu, G. Stevenson, C.-Q. Lu, and G. Q. Lu, 'Dispersion and Size Control of Layered Double Hydroxide Nanoparticles in Aqueous Solutions,' The Journal of Physical Chemistry B, vol. 110, pp. 16923-16929,2006. [12] T. Stanimirova, I. Vergilov, G. Kirov, and N. Petrova, 'Thermal decomposition products of hydrotalcite-like compounds: low-temperature metaphases,' Journal of Materials Science, vol. 34, pp. 4153-4161,1999. [13] J. He, M. Wei, B. Li, Y. Kang, D. Evans, and X. Duan, 'Preparation of Layered Double Hydroxides,' in Layered Double Hydroxides. vol. 119, X. Duan and D. Evans, Eds., ed: Springer Berlin Heidelberg, 2006, pp. 89-119. [14] N. Morel-Desrosiers, J. Pisson, Y. Israeli, C. Taviot-Gueho, J.-P. Besse, and J.-P. Morel, 'Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange,' Journal of Materials Chemistry, vol. 13, pp. 2582-2585,2003. [15] S. Carlino, M. J. Hudson, S. W. Husain, and J. A. Knowles, 'The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide,' Solid State Ionics, vol. 84, pp. 117-129,1996. [16] K. L. Erickson, T. E. Bostrom, and R. L. Frost, 'A study of structural memory effects in synthetic hydrotalcites using environmental SEM,' Materials Letters, vol. 59, pp. 226-229,2005. [17] U. Costantino, F. Marmottini, M. Nocchetti, and R. Vivani, 'New Synthetic Routes to Hydrotalcite‐Like Compounds− Characterisation and Properties of the Obtained Materials,' Berichte der deutschen chemischen Gesellschaft, pp. 1439-1446,1998. [18] M. Ogawa and H. Kaiho, 'Homogeneous Precipitation of Uniform Hydrotalcite Particles,' Langmuir, vol. 18, pp. 4240-4242,2002. [19] W.-C. Liao, '在大氣環境下以負極電沉積法成長鋰鋁層狀氫氧化合物 (Li-Al-CO3 LDH) 薄膜於 1050 鋁基材之研究,' 中興大學材料科學與工程學系所學位論文, pp. 1-46,2013. [20] J.-H. Syu, J.-Y. Uan, M.-C. Lin, and Z.-Y. Lin, 'Optically transparent Li–Al–CO3 layered double hydroxide thin films on an AZ31 Mg alloy formed by electrochemical deposition and their corrosion resistance in a dilute chloride environment,' Corrosion Science, vol. 68, pp. 238-248,2013. [21] X. Guo, S. Xu, L. Zhao, W. Lu, F. Zhang, D. G. Evans, et al., 'One-Step Hydrothermal Crystallization of a Layered Double Hydroxide/Alumina Bilayer Film on Aluminum and Its Corrosion Resistance Properties,' Langmuir, vol. 25, pp. 9894-9897,2009. [22] F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans, and X. Duan, 'Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum,' Angewandte Chemie International Edition, vol. 47, pp. 2466-2469,2008. [23] 辜泓熙, '純鎂表面生長鎂鐵碳酸根雙層氫氧化物及其在模擬體液中的抗蝕性研究,' 中興大學材料科學與工程學系所學位論文, pp. 1-36,2012. [24] C. Del Hoyo, 'Layered double hydroxides and human health: An overview,' Applied Clay Science, vol. 36, pp. 103-121,2007. [25] Y.-H. Chi, J.-Y. Uan, M.-C. Lin, Y.-L. Lin, and J.-H. Huang, 'Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling,' International Journal of Hydrogen Energy, vol. 38, pp. 13734-13741,2013. [26] C.-F. Lin, P.-H. Tsai, Z.-Y. Lin, J.-Y. Uan, C.-M. Lin, C.-C. Yang, et al., 'Solution-processed Li–Al layered-double-hydroxide platelet structures for high efficiency InGaN light emitting diodes,' Optics Express, vol. 20, pp. A669-A677,2012. [27] J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan-Jimenez, and M. Crocker, 'Biodiesel production from soybean oil using calcined Li–Al layered double hydroxide catalysts,' Catalysis Letters, vol. 115, pp. 56-61,2007. [28] G. Fan, F. Li, D. G. Evans, and X. Duan, 'Catalytic applications of layered double hydroxides: recent advances and perspectives,' Chemical Society Reviews, vol. 43, pp. 7040-7066,2014. [29] S. Bhattacharjee, T. J. Dines, and J. A. Anderson, 'Comparison of Co with Mn and Fe in LDH-hosted Sulfonato−Salen Catalysts for Olefin Epoxidation,' The Journal of Physical Chemistry C, vol. 112, pp. 14124-14130,2008. [30] J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, et al., 'Biodiesel synthesis using calcined layered double hydroxide catalysts,' Applied Catalysis B: Environmental, vol. 82, pp. 120-130,2008. [31] F. L. Sousa, M. Pillinger, R. A. Sá Ferreira, C. M. Granadeiro, A. M. V. Cavaleiro, J. Rocha, et al., 'Luminescent Polyoxotungstoeuropate Anion-Pillared Layered Double Hydroxides,' European Journal of Inorganic Chemistry, vol. 2006, pp. 726-734,2006. [32] D. Yan, J. Lu, J. Ma, M. Wei, D. G. Evans, and X. Duan, 'Benzocarbazole anions intercalated layered double hydroxide and its tunable fluorescence,' Physical Chemistry Chemical Physics, vol. 12, pp. 15085-15092,2010. [33] Y. Chen, S. Zhou, F. Li, and Y. Chen, 'Synthesis and photoluminescence of Eu-doped Zn/Al layered double hydroxides,' Journal of Materials Science, vol. 45, pp. 6417-6423,2010. [34] S. Li, J. Lu, H. Ma, D. Yan, Z. Li, S. Qin, et al., 'Luminous Ultrathin Films by the Ordered Micellar Assembly of Neutral Bis(8-hydroxyquinolate)zinc with Layered Double Hydroxides,' The Journal of Physical Chemistry C, vol. 116, pp. 12836-12843,2012. [35] L. Latterini, F. Elisei, G. G. Aloisi, U. Costantino, and M. Nocchetti, 'Space-resolved fluorescence properties of phenolphthalein-hydrotalcite nanocomposites,' Physical Chemistry Chemical Physics, vol. 4, pp. 2792-2798,2002. [36] U. Costantino, N. Coletti, M. Nocchetti, G. G. Aloisi, and F. Elisei, 'Anion Exchange of Methyl Orange into Zn−Al Synthetic Hydrotalcite and Photophysical Characterization of the Intercalates Obtained,' Langmuir, vol. 15, pp. 4454-4460,1999. [37] U. Costantino, N. Coletti, M. Nocchetti, G. G. Aloisi, F. Elisei, and L. Latterini, 'Surface Uptake and Intercalation of Fluorescein Anions into Zn−Al−Hydrotalcite. Photophysical Characterization of Materials Obtained,' Langmuir, vol. 16, pp. 10351-10358,2000. [38] D. Yan, J. Lu, M. Wei, J. Ma, D. G. Evans, and X. Duan, 'Layer-by-layer assembly of ruthenium(ii) complex anion/layered double hydroxide ordered ultrathin films with polarized luminescence,' Chemical Communications, pp. 6358-6360,2009. [39] H. Chen and W.-G. Zhang, 'A Strong-Fluorescent Tb-Containing Hydrotalcite-Like Compound,' Journal of the American Ceramic Society, vol. 93, pp. 2305-2310,2010. [40] X. Gao, M. Hu, L. Lei, D. O''Hare, C. Markland, Y. Sun, et al., 'Enhanced luminescence of europium-doped layered double hydroxides intercalated by sensitiser anions,' Chemical Communications, vol. 47, pp. 2104-2106,2011. [41] M.-C. Lin, F.-T. Chang, and J.-Y. Uan, 'Aqueous Li+/Al3+ alkaline solution for CO2 capture and the massive Li-Al-CO3 hydrotalcite precipitation during the interaction between CO2 gas and the Li+/Al3+ aqueous solution,' Journal of Materials Chemistry A, vol. 1, pp. 14773-14782,2013. [42] C. J. Serna, J. White, and S. Hem, 'Hydrolysis of aluminum-tri-(sec-butoxide) in ionic and nonionic media,' Clays and Clay Minerals, vol. 25, pp. 384-391,1977. [43] I. C. Chisem and W. Jones, 'Ion-exchange properties of lithium aluminium layered double hydroxides,' Journal of Materials Chemistry, vol. 4, pp. 1737-1744,1994. [44] P. Zhang, G. Qian, H. Shi, X. Ruan, J. Yang, and R. L. Frost, 'Mechanism of interaction of hydrocalumites (Ca/Al-LDH) with methyl orange and acidic scarlet GR,' Journal of Colloid and Interface Science, vol. 365, pp. 110-116,2012. [45] Aramendı, amp, x, M. a, amp, x, et al., 'Comparative Study of Mg/M(III) (M=Al, Ga, In) Layered Double Hydroxides Obtained by Coprecipitation and the Sol–Gel Method,' Journal of Solid State Chemistry, vol. 168, pp. 156-161,2002. [46] V. Siva Kumar, A. H. Padmasri, C. V. V. Satyanarayana, I. Ajit Kumar Reddy, B. David Raju, and K. S. Rama Rao, 'Nature and mode of addition of phosphate precursor in the synthesis of aluminum phosphate and its influence on methanol dehydration to dimethyl ether,' Catalysis Communications, vol. 7, pp. 745-751,2006. [47] C. J. Serna, J. C. Lyons, J. L. White, and S. L. Hem, 'Stabilization of aluminum hydroxide gel by specifically adsorbed carbonate,' Journal of Pharmaceutical Sciences, vol. 72, pp. 769-771,1983. [48] A. W. Rudie and P. W. Hart, 'Mineral scale management Part II. fundamental chemistry,' Tappi journal, vol. 5, p. 17,2006. [49] L. Huang, J. Wang, Y. Gao, Y. Qiao, Q. Zheng, Z. Guo, et al., 'Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range,' Journal of Materials Chemistry A, vol. 2, pp. 18454-18462,2014.
摘要: Luminescence of layered double hydroxide (LDH) has been the focus of much scholarly research and popular attention. The general common preparation methods of luminescence LDH:(1) Intercalated transition metal element;(2) The anion dye intercalated into LDH;(3) Doping the rare earth metals, etc. This study of Li-Al-CO3 LDH do not need to add transition metals, rare earth elements or other anion dye, just adsorption of carbon dioxide (CO32-) that is used as the interlayer anion have luminescent properties. Use Photoluminescence Spectrometer (PL) to measure the luminescence intensity of LDH after heat treatment at different temperature. Between room temperature to 300 °C, with the heat treatment temperature increase, the fluorescence intensity increase. Li-Al-CO3 LDH after 300 °C heat treatment, fluorescence intensity increased 10 times. The Li-Al-CO3 LDH after 300 °C, 400 °C heat treatment place into Temperature & Humidity Chamber (25 °C_65 %RH) and passing air flow rate of 20 (L/min) to maintain 28 days. The fluorescence intensity decreased of LDH after 300 °C, 400 °C heat treatment with holding time increase, to 7 days after the fluorescence intensity tends to a stable value, reasons for this phenomenon is the heat treatment remove the interlayer carbonate anions, with the increase of storage time, carbonate anions reply to interlayer region caused decrease in fluorescence intensity. However, this is still far higher than the fluorescence intensity of the non-heat treated Li-Al-CO3 LDH. The Li-Al-CO3 LDH after 300 °C heat treatment place into Temperature & Humidity Chamber (25 °C_10 %RH) and passing air flow rate of 20 (L/min) to maintain 28 days. With holding time increase fluorescence intensity smaller decline of LDH. The results suggest that in the interlayer carbonate anions will result in fluorescence intensity decrease of LDH. Because atmospheric carbon dioxide is soluble in water to form carbonic acid anion, in a high humidity environment will cause decrease fluorescence intensity of LDH. The Li-Al-CO3 LDH of luminescence band at 400 nm, expected to be applied to long-ultraviolet (UVA) the scope of application in the future. This Li-Al-CO3 LDH after 300 °C heat treatment has a unique fluorescent properties. The LDH were measured hydrogen evolution reaction (HER) with good catalytic effect of hydrogen evolution. Our lab will focus on this LDH-300 °C to improve process and parameters expected to be applied to the development of the cathode material in the future.
近年來層狀雙氫氧化物(LDH)在光學上的研究頗受矚目,而一般常見的LDH發光製備方法有插入有機染劑之陰離子做陰離子交換;插入過渡金屬元素至LDH夾層中;添加稀土元素的離子等。本研究開發之Li-Al-CO3 LDH,不需加入過渡金屬及稀土金屬元素或其他螢光物質,藉由吸附二氧化碳(碳酸根)作為陰離子即具有發光特性。使用光激發螢光光譜儀(PL)量測此LDH經由不同溫度熱處理後之螢光強度變化。熱處理溫度於300 °C之前,其螢光強度隨著熱處理溫度上升而增加,當LDH經過300 °C熱處理後螢光強度增強10倍。將Li-Al-CO3 LDH經300 °C、400 °C熱處理後放置於溫度25 °C,濕度65 %RH之恆溫恆濕試驗箱通入每分鐘20公升流量之空氣並放置28天。其中LDH經300 °C及400 °C熱處理後隨放置天數的增加而螢光強度下降,至7天後螢光強度趨於一穩定值,此原因為熱處理去除夾層內碳酸根陰離子,隨著放置時間的增加其碳酸根陰離子回復至LDH夾層中造成螢光強度下降,然而此螢光強度仍然遠高於未經熱處理之Li-Al-CO3 LDH。將此LDH經300 °C熱處理後放置於溫度25 °C,濕度10 %RH之乾燥環境並通入每分鐘20公升流量之空氣並放置28天,此LDH隨放置天數增加螢光強度下降的趨勢較小;本實驗結果顯示,夾層內碳酸根陰離子會造成LDH螢光強度下降而大氣中二氧化碳易溶於水中形成碳酸根陰離子,因此在高濕度的環境下會造成螢光強度明顯下降的現象。此Li-Al-CO3 LDH之發光波段為400 nm,未來可望應用於長紫外光(UVA)之應用範疇。由本實驗室開發之Li-Al-CO3 LDH經300 °C熱處理後具有獨特之螢光特性,將此LDH進行析氫催化反應量測具有良好之析氫催化效果;本實驗室後續將針對此LDH-300 °C進行製程及參數改良,未來可望應用於陰極材料之開發。
其他識別: U0005-0408201515143100
文章公開時間: 2018-08-05
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.