Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91999
標題: 利用非磁性材料B與TaOx對FePt薄膜做晶粒分隔之研究
Magnetic properties and microstructure of granular FePtX(X=B, TaOx) thin films
作者: 陳怡秀
Yi-Hsiu Chen
關鍵字: 鐵鉑
磁性材料
晶粒分隔
薄膜
FePt
granular
magnetic
thin films
引用: [1] Roger Wood, Journal of Magnetism and Magnetic Materials, Vol.321, 555 (2009). [2] S. H. Charap, Pu-Ling Lu, and Yanjun He, IEEE Trans. Magn., Vol.33, No. 1 (1997). [3] Shun-ichi Iwasaki and Katsumaro Takemura, IEEE Trans. Magn., Vol.11, No. 5 (1975). [4] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J-U Thiele and M. F. Doerner, IEEE Trans. Magn., Vol.36, No. 1 (2000). [5] J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, G. M. Chow et al., Appl. Phys. Lett., Vol. 91, 132506 (2007). [6] J. L. Tsai, J. C. Huang, and H. W. Tai, J. Appl. Phys., Vol.111, 07A709 (2012). [7] C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys. ,Vol. 92, No. 10 (2002). [8] B. S. D. Ch. S. Varaprasad , M.Chen , Y. K. Takahashi , and K. Hono, IEEE Trans. Magn., Vol.49, No. 2 (2013). [9] B. C. Lim, J. S. Chen, J. F. Hu, P. W. Lwin, Y. F. Ding, K. M. Cher, and B. Liu, J. Appl. Phys., Vol. 105, 07A730 (2009). [10] M. Hansen, “Constitution of Binary Alloys”, McGraw. New York., P.698 (1958). [11] U. Kawald, W. Zemke, H. Bach, J. Pelzl and G. A. Saunders, Phsyica B, Vol. 161, 72 (1989). [12] B. E. Warren, “X-ray Diffraction”, Dover, New York, P. 227, (1990). [13] 引用資料來源網址”http://resource.npl.co.uk/mtdata/phdiagrams/cmo.htm” [14] T. Aoyama, I. Sato, H. Ito, S. Ishio, Journal of Magnetism and Magnetic Materials, Vol. 287, 209-213(2005). [15] Steven D. Granza, Katayun Barmak, and Mark H. Kryder, Eur. Phys. J. B, Vol.86, 81(2013). [16] 金重勳、李景明、張慶瑞,”磁性技術手冊”,中華民國磁性技術協會(2002)。 [17] N. A. Spaldin, Magnetic Material, P. 17 (2011). [18] 許樹恩、吳泰伯合著,”X光繞射原理與材料結構分析”第十三章(2006)。 [19] B.D. Cullity, “introduction to magnetic materials”, Ch7, Wesley (1972). [20] D.E.Gray, McGraw-Hill, “American Institute of Physics Handbook” (1972). [21] M.J. Clerk, Atreatise on Electicity and magnetism, Vol. 2, 1006 (1954). [22] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Tony, M. Schwickert, Jan-Ulrich Thiele and Mary F. Doerner, IEEE Trans. Magn. Vol. 36, NO.10(2000). [23] E. P. Wohlfarth, J. Appl. Phys. ,Vol. 29, 595 (1958). [24] K. Takanashi, M. Watanabe and H. Fujimori, Journal of Magnetism and Magnetic Materials, Vol.104, 1749 (1992). [25] Growth Mechanisms of Polycrystalline Thin Films, Page 4, Fig.1. [26] Oura, K., Lifshits, V.G., Saranin, A., Zotov, A.V., Katayama, M. Surface Science: An Introduction, Page 452 (2010). [27] Yingfan Xu, J. S. Chen, and J. P. Wang, Appl. Phys. Lett. Vol. 80, 3325 (2002). [28] Wei-Chih Wen, Roman V. Chepulskii, Liang-Wei Wang, Stefano Curtarolo, Chih-Huang Lai, Acta Materialia, Vol. 60, 7258(2012). [29] Steven D.Granz n, MarkH.Kryder, Journal of Magnetism and Magnetic Materials, Vol.324, 287 (2012). [30] Dieter Weller, Oleksandr Mosendz, Gregory Parker, Simone Pisana, and Tiffany S. Santos, Phys. Status Solidi A, Vol. 210, 1245 (2013). [31] Jin-Chun Chiu, Wei-Chih Wen, Liang-Wei Wang, Ding-Shuo Wang, and Chih-Huang Lai, J. Appl. Phys. Vol.115, 17B713 (2014). [32] J. S. Chen, B. C. Lim, Y. F. Ding, J. F. Hu, G. M. Chow, and G. Ju, J. Appl. Phys. Vol. 105, 07B702 (2009). [33] R. F. L. Evans, R. W. Chantrell, U. Nowak, A. Lyberatos, and H.-J. Richter, Appl. Phys. Lett. Vol. 100, 102402 (2012). [34] Copyright c 2012 University of Massachusetts Amherst. [35] 引用資料來源 國立中興大學材料系貴儀網頁。 [36] 引用資料來源 國立中正大學物理系網頁。 [37] B.D. Cullity, “introduction to magnetic materials”, P.68 (1972). [38] D. B. W. a. C. B. Carter, Transmission Electron Microscopy: Plenum Press, New York and London (1996). [39] Chih-Huang Lai, Cheng-Han Yang, C. C. Chiang, T. Balaji, and T. K. Tseng, Appl. Phys. Lett., Vol.85, 4430 (2004). [40] En Yang, David E. Laughlin, and Jian-Gang Zhu, IEEE Trans. Magn., Vol.48, No. 1 (2012).
摘要: We investigated the third elements capping on the epitaxial FePt films leading to a granular structure. There are three parts in our experiment. In the first part, a boron capping layer was deposited on CrRu(80 nm)/MoC(5 nm)/FePt(8 nm) films. The boron volume ratio was from 0% to 15% and annealed by the rapid thermal processing(RTP, 8℃/s) and chamber(0.8℃/s) at 450oC for 15 min. We observed the two annealing methods all with the perpendicular magnetization and granular structure. When the boron volume ratio was 10%, the average grains size of the chamber sample was 15.2 nm, and the RTP sample was 14.3 nm. In the second part, we used the best conditions of the first part and change the annealing temperature form room temperature to 550℃ for 15min. In lower annealing temperature, the transition state rectangle grains produced and with increase the temperature, the rectangle grains disappear. The perpendicular magnetization of chamber samples improved at 450℃ because of the boron diffused into FePt grain boundaries during post-annealing. The perpendicular coercivity increased from 6.6 kOe to 7.6 kOe. For the RTP sample, there was no significantly improved of magnetic properties due to its higher heating rate, the diffusion time was not enough to make boron atoms into FePt grain boundaries. In the third part, we deposited a TaOx capping layer on CrRu(80 nm)/MoC(5 nm)/FePt(8 nm) films by Ion Beam Assisted Deposition (IBAD) with various O2 flow (0%-25.8%) and annealed by the RTP at 450oC for 15 min. With increase the O2 flow, the perpendicular magnetization was destroyed and the order parameter (S) was reduced, the perpendicular coercivity reduced from 5.5 kOe to 4.8 kOe and order parameter reduced from 0.79 to 0.71.There were no granular structure observed because the FeOx formation.
本實驗主要探討在FePt磊晶薄膜頂層覆蓋不同非磁性材料(B及TaOx)以達成良好晶粒分隔及晶粒細化之顆粒薄膜結構,分為三個部分進行。第一部分為利用B當作分隔材料,以磁控濺鍍系統沉積於CrRu(80 nm)/MoC(5 nm)/FePt(8 nm)磊晶薄膜頂層,改變B的覆蓋量由0%至15%,經由快速升溫退火製程(8℃/s)及腔體內退火製程(0.8℃/s)於450oC持溫15分鐘。結果顯示兩種退火方式皆保持了良好的垂直異向性,並以腔體內退火之樣品於B覆蓋10%時具有較佳的磁性質與分隔結構,晶粒尺寸可達15.2 nm,而快速升溫退火之樣品於5%時得到最佳的分隔結構,晶粒尺寸可達14.3 nm。 第二部份則利用第一部分兩種退火方式之最佳B覆蓋量,研究其改變退火溫度的影響,退火溫度由室溫升至550℃並持溫15分鐘。結果顯示兩種退火方式在低溫時皆出現了過渡狀態的矩形顆粒,並於高溫時擴散而消失,其中以腔體內退火450℃的垂直異向性因B的擴散有明顯被改善,其垂直矯頑磁力由6.6 kOe上升至7.6 kOe,而快速升溫退火樣品因升降溫快速導致B無法有效擴散使得磁性質無明顯改善。 第三部分利用雙離子束濺鍍系統在鍍Ta的過程中通入不同含量的O2(0%-25.8%)使之形成TaOx,經快速升溫退火於450℃持溫15分鐘,研究其磁性質與微結構的變化。結果顯示隨著通氧量的上升,樣品垂直異向性及序化度明顯被破壞,矯頑磁力由5.5 kOe下降至4.8 kOe,序化度則由0.79下降至0.71,並且顯微結構並無晶粒分隔現象的產生,這是因為通入的O2與FePt中的Fe形成氧化物所致。
URI: http://hdl.handle.net/11455/91999
其他識別: U0005-2706201414321200
文章公開時間: 2015-07-03
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.