Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92013
DC FieldValueLanguage
dc.contributorSham-Tsong Shiueen_US
dc.contributor薛顯宗zh_TW
dc.contributor.author洪嘉陽zh_TW
dc.contributor.authorJia-Yang Hongen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-11T09:06:19Z-
dc.identifierU0005-2107201501482100zh_TW
dc.identifier.citation[1] J. Robertson, Materials Science and Engineering R:Reports, 37 (2002) 129. [2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [3] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [4] R.H. Baughman, A.A. Zakhidov, and W.A. deHeer, Science, 297 (2002) 787. [5] H. Zhu, J. Wei, K. Wang, and De. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [6] C. De Martino, F. Demichelis, and A. Tagliaferro, Diamond and Related Materials, 4 (1995) 1210. [7] W. Jacob and W. Möller, Applied Physics Letters, 63 (1993) 1771. [8] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva, Journal of Applied Physics, 82 (1997) 6024. [9] J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu, Applied Physics Letters, 58 (1991) 466. [10] J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, and R. Brenn, Journal of Applied Physics, 79 (1996) 1416. [11] B. Druz, S. DiStefano, A. Hayes, E. Ostan, K. Williams, and L. Wang, Surface and Coatings Technology, 86 (1996) 708. [12] R. Gago, O. Sánchez-Garrido, A. Climent-Font, J.M. Albella, E. Román, J. Raisanen, and E. Raühala, Thin Solid Films, 338 (1999) 88. [13] H.C. Lin, S.T. Shiue, Y.M. Chou, H.Y. Lin, and T.C. Wu, Thin Solid Films, 516 (2007) 114. [14] S.S. Chen, S.T. Shiue, K.J. Cheng, P.Y. Chen, and H.Y. Lin, Optical Engineering, 47 (2008) 45005. [15] E. Tomasella, C. Meunier, and S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [16] N.K. Cuong, M. Tahara, N. Yamauchi, and T. Sone, Surface and Coatings Technology, 174 (2003) 1024. [17] Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, and I. Lin, Diamond and Related Materiald, 13 (2004) 671. [18] S.R. Jian, T.H. Fang, and D.S. Chuu, Journal of Non-Crysalline Solids, 333 (2004) 291. [19] G. Fanchini, A. Tagliaferro, B. Popescu, and E.A. Davis, Journal of Non-Crysalline Solids, 299 (2002) 846. [20] I. Langmuir, Physical Review Letters, 33 (1929) 954. [21] A. Grill. Cold Plasma in Materials Fabrication: From Fundamentals to Applications, New York, USA: IEEE Press (1994). [22] Z. Sun, C.H. Lin, Y.L. Lee, J.R. Shi, B.K. Tay, and X. Sh, Journal of Applied Physics, 87 (2000) 8122. [23] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, F.L.Freire Jr, Journal of Non-Crystalline Solids, 338 (2004) 503. [24] G. Capote, F.L. Freire, L.G. Jacobsohn, G. Mariotto, Diamond and Related Materials, 13 (2004) 1454. [25] H. Tahara, K.I. Minami, A. Murai, T. Yasui, and T. Yoshikawa, Japanese Journal of Applied Physics, 34 (1995) 1972. [26] C. Wan and X. Zhang, Applied Physics Letters, 95 (2009) 105. [27] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, and W.I. Milne, Journal of Applied Physics, 87 (2000) 789. [28] V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, and D.R. Mackenzie, Journal of Physics: Condensed Matter, 5 (1993) L169. [29] S. Adhikari, H.R. Aryal, D.C. Ghimire, A.M.M. Omer, S. Adhikary, H. Uchida, and M. Umeno, Diamond and Related Materials, 15 (2006) 1894. [30] A.M.M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, and M. Umeno, Diamond and Related Materials, 14 (2005) 1084. [31] C.H. Lee and K.S. Lim, Applied Physics Letters, 72 (1998) 106. [32] K.M. Krishna, T. Soga, T. Jimbo, and M. Umeno, Carbon, 37 (1999) 531. [33] K.M. Krishna, M. Umeno, Y. Nukaya,T. Soga, and T.J imbo, Applied Physics Letters, 77 (2000) 1472. [34] K.L. Narayanan, O. Goetzgberger, A. Khan,N. Kojima, and M. Yamaguchi, Solar Energy Materials and Solar Cells, 65 (2001) 29. [35] N. Konofaos, E. Evangelou, and C.B. Thomas, Journal of Applied Physics, 84 (1998) 4634. [36] N.A. Hastas, C.A. Dimitriadis, D.H. Tassis, and S. Logothetidis, Applied Physics Letters, 79 (2001) 638. [37] L.Z. Hao, Q.Z. Xue, X.L. Gao, Q. Li, Q.B. Zheng, and K.Y. Yan, Journal of Applied Physics, 101 (2007) 053718. [38] X.M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [39] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 90 (2006) 3205. [40] G.A.J. Amaratunga, D.E. Segal, and D.R. McKenzie, Applied Physics Letters, 59 (1991) 69. [41] J. Yang and A. Banerjee, and S. Guha, Solar Energy Materials and Solar Cells, 78 (2003) 597. [42] W. Dai and A. Wang, Journal of Alloys and Compounds, 509 (2011) 4626. [43] E.C. Le Ru and P.G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, Wellington, New Zealand, (2009). [44] R. Vuppuladhadium, H.E. Jackson, and R.L.C. Wu, Journal of Applied Physics, 77 (1995) 2714. [45] B.S. Elman, M. Shayegan, M.S. Dresselhaus, H. Mazurek, and G. Dresselhaus, Physical Review B, 25 (1982) 4142. [46] H.C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton, and S.T. Mayer, Journal of Vacuum Science and Technology, 6 (1988) 2307. [47] P.Lespade, R. Al-Jishi, and M.S. Dresselhaus, Carbon, 20 (1982) 427. [48] C.A. Taylor M.F. Wayne, and W.K.S. Chiu, Thin Solid Films, 429 (2003) 190. [49] H.C. Hsueh, H.C. Li, D. Chiang, and S. Lee, Journal of The Electrochemical Society, 159 (2012) D77. [50] V. Protopopova, A. Iyer, N.Wester, A. Kondrateva, S. Sainio, T. Palomäki, T. Laurila, M. Mishin, and J .Koskinen, Diamond & Related Materials, (2015) [51] J.K. Shin, C.S. Lee, K.R. Lee, and K.Y. Eun, Applied Physics Letters, 78 (2001) 631. [52] C. Casiraghi, A.C. Ferrari, and J. Robertson, Physical Review B, 72 (2005) 085401. [53] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M.Umeno, Journal of Physics: Condensed Matter, 17 (2005) 1929. [54] H.S. Zhang and K. Komvopoulos, Journal of Applied Physics, 106 (2009) 093504. [55] P. M´erel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [56] G.L.Du, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surface and Coatings Technology, 201 (2007) 5815. [57] S. Kaciulis, Surface and Interface, Analysis, 44 (2012) 1155. [58] C. Oppedisano and A. Tagliaferro, Applied Physics Letters, 75 (1999) 3650. [59] J. Tauc, R. Grigorovici, and A. Vancu, Physica Status Solid B, 15 (1966) 627. [60] M.A. Green. Solar Cells: Operating Principles, Technology, and System Applications. New Jersey, USA: Prentice-Hall; (1982). [61] S.M.Sze, Physics of Semiconductor Devices Second Edition, (1985)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/92013-
dc.description.abstractThis study prepares p-type amorphous cobalt carbon (a-CoC) thin film alloys at different radio-frequency (RF) powers using reactive sputtering deposition, and investigates the microstructures, optical, and electrical properties of a-CoC thin film alloys. Moreover, the p-type a-CoC thin film alloys with identical thickness of 100 nm are deposited on n-type silicon substrates to fabricate a-CoC/n-Si device, and the properties of this device are also studied. Experimental results indicate that as the RF power increases from 50 to 250 W, the deposition rate rises; XPS results show that the cobalt/carbon ratio increases from 2.8 to 59.2%, and the sp2 carbon fraction of a-CoC thin film alloys increases from 24 to 60%; and Raman results indicate that ID/IG increases from 0.66 to 1.55. Additionally, as the RF power increases from 50 to 250 W, the optical band gap of a-CoC thin film alloys decreses from 2.16 to 0.17 eV and the resistivity decreases from 3.9×102 to 3.8×10-4 Ω·m. This is because the cobalt content in the a-CoC thin film alloys increases and their structure changes into metal. At the RF power of 100 W, the a-CoC/n-Si device has an optimal ideality factor of 1.6, and its built-in voltage is 0.51 V.en_US
dc.description.abstract本論文以反應式濺鍍沉積法在不同射頻功率下製備p型非晶質鈷碳(a-CoC)薄膜合金,並對非晶質鈷碳薄膜合金之微結構、光學性和電學性質加以探討。另外,本研究也將100 nm厚之p型非晶質鈷碳薄膜合金沉積在n型矽基材上製備成a-CoC/n-Si元件,並探討其特性。實驗結果發現,當射頻功率從50 W上升至250 W,沉積速率上升;在微結構量測方面,X光光電子能譜量測顯示鈷碳薄膜合金之Co/C比例從2.8 %增加至59.2 %,sp2 C=C鍵結比例從24 %上升至60 %;拉曼散射光譜量測發現ID/IG由0.66增加至1.55;在光電特性量測方面,光學能隙值由2.16 eV降低至0.17 eV,而電阻率由3.9×102 Ω·m減少到3.8×10-4 Ω·m。這是由於薄膜合金之鈷含量增加使其趨向金屬特性。在射頻功率為100 W時,a-CoC/n-Si元件有最佳的理想因子值1.6,此時其內建電位值為0.51 V。zh_TW
dc.description.tableofcontents摘要 i Abstract ii 總目錄 iii 圖目錄 v 表目錄 viii 第 1 章 緒論 - 1 - 1.1碳材料介紹 - 1 - 1.2非晶質碳膜種類 - 3 - 1.2.1類鑽碳膜 - 4 - 1.2.2類石墨碳膜 - 4 - 1.2.3類高分子碳膜 - 4 - 1.3非晶質碳膜沉積法介紹 - 5 - 1.4非晶質碳膜摻雜改質 - 9 - 1.5 pn接面(p-n junction)基本原理 - 11 - 1.6研究動機 - 13 - 1.7論文概述 - 15 - 第 2 章 實驗步驟 - 16 - 2.1反應式濺鍍沉積系統 (Reactive sputtering deposition) - 18 - 2.2試片準備與前處理 - 23 - 2.3 p型非晶質鈷碳薄膜(a-CoC)之製備 - 26 - 2.4電漿診斷 - 28 - 2.5非晶質碳薄膜微觀結構量測 - 30 - 2.5.1場發射掃描式電子顯微鏡 - 30 - 2.5.2場發射穿透式電子顯微鏡 - 31 - 2.5.3拉曼散射光譜儀 - 32 - 2.5.3 X光光電子能譜 - 36 - 2.5.4傅立葉轉換紅外光光譜儀 - 38 - 2.6碳薄膜光學性質量測 - 39 - 2.7碳薄膜電阻率 - 40 - 2.8 pn接面二極體元件特性量測 - 42 - 2.8.1電流電壓曲線量測 - 42 - 2.8.2電容電壓曲線量測 - 43 - 第3章 結果與討論 - 44 - 3.1電漿診斷分析 - 45 - 3.2碳膜沉積速率 - 50 - 3.3微觀結構 - 52 - 3.3.1場發射掃描式電子顯微鏡 - 52 - 3.3.2拉曼散射光譜儀 - 54 - 3.3.3 X光光電子能譜儀 - 57 - 3.3.4傅立葉轉換紅外光光譜儀 - 63 - 3.4光學性質 - 66 - 3.5電阻率量測 - 73 - 3.6元件特性量測 - 75 - 3.6.1電流電壓特性曲線分析 - 75 - 3.6.2 TEM量測結果 - 80 - 3.6.3電容電壓特性曲線分析 - 81 - 第4章 結論 - 84 - 參考文獻 - 85 -zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subject鈷摻雜zh_TW
dc.subject碳膜zh_TW
dc.subjectcobalt doppingen_US
dc.subjectcarbon filmen_US
dc.title射頻功率對以反應式濺鍍沉積p型非晶質鈷碳薄膜合金特性之影響zh_TW
dc.titleEffects of radio-frequency powers on properties of p-type amorphous cobalt carbon thin film alloys prepared by reactive sputtering depositionen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-07-24zh_TW
dc.date.openaccess10000-01-01-
Appears in Collections:材料科學與工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.