Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92014
標題: 對位聚苯乙烯/蒙脫土奈米複合材料之製備與結晶行為研究
Preparation and Crystallization of Syndiotactic Polystyrene/MMT nanocomposites
作者: 陳盈伶
Ying-Ling Chen
關鍵字: 對位聚苯乙烯
蒙脫土
1,2,4-三氯苯
Syndiotactic polystyrene
Montmorillonite
1,2,4-Trichlorobenzene
引用: [1] T. J. Pinnavaia, G. W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons (2000) [2] T. D. Fornes, D. R. Paul, Polymer, 44, 3945 (2003) [3] N. Ishihara, T. Seimiya, M. Kuramoto and M. Uoi, Macromolecules, 19, 2464 (1986) [4] S. Cimmino, E. D. Pace, E. Martuscelli, C. Silvestre, Polymer, 32, 1080 (1991) [5] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini, Macromolecules, 23, 1539 (1990) [6] Y. Chatani, Y. Shimane, Y. Inoue, T. Inagaki, T. Ishioka, T. Ijitsu, T. Yukinari, Polymer, 33, 488 (1992) [7] C. D. Rosa, G. Guerra, V. Petraccone, P. Corradini, Polymer Journal, 23, 1435 (1991) [8] K. Tashiro, Y. Ueno, A. Yoshioka, M. Kobayashi, Macromolecules, 34, 310 (2001) [9] E. B. Gowd, K. Tashiro, C. Ramesh, Progress in Polymer Science, 34, 280 (2009) [10] C. Manfredi, C. D. Rosa, G. Guerra, M. Rapacciuolo, F. Auriemma, P. Corradini, Macromol. Chem. Phys, 196, 2795 (1995) [11] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini, Macromolecules, 23, 1539 (1990) [12] K. Tashiro, A. Yoshioka, Macromolecules, 35, 410 (2002) [13] K. Tsutsui, Y. Tsujita, H. Yoshimizu, T. Kinoshita, Polymer, 39, 5177 (1998) [14] J. S. Chiou, J. W. Barlow, D.R. Paul, Journal of Applied Polymer Science, 30, 2633 (1985) [15] E. Reverchon, G. Guerra, V. Venditto, Journal of Applied Polymer Science, 74, 2077 (1999) [16] E. B. Gowd, N. Shibayama, K. Tashiro, Macromolecules, 40, 6291 (2007) [17] W. Li, P. Wu, Appiled Spectroscopy, 63, 926 (2009) [18] A. Yoshioka, K. Tashiro, Polymer, 44, 6681 (2003) [19] Y. S. Sun, E. M. Woo, M. C. Wu, Macromolecules, 36, 8415 (2003) [20] W. Bu, Y. Li, J. He, J. Zeng, Macromolecules, 32, 7224 (1999) [21] Z. Sun, R. J. Morgan, D. N. Lewis, Polymer, 33, 660 (1992) [22] Y. S. Sun, E. M. Woo, Macromolecules, 32, 7836 (1999) [23] J. Fang, E. Kiran, The Journal of Supercritical Fluids, 49, 93 (2009) [24] Y. S. Sun, E. M. Woo, M. C. Wu, Macromol. Chem. Phys., 204, 1547 (2003) [25] R. H. Lin, E. M. Woo, Polymer, 41, 121 (2000) [26] J. D. Rudder, H. Berghmans, J. Arnauts, Polymer, 40, 5919 (1999) [27] A. Blumstein, Journal of Polymer Science: Part A, 3, 2653 (1965) [28] D. C. Lee, L. W. Jang, Journal of applied polymer science, 61, 1117 (1996) [29] G. Chen, B. Han, H. Yan, Journal of Colloid and Interface Science, 201, 158 (1998) [30] 簡正豐, 聚苯乙烯/蒙脫土界面改質對物性影響, 中興大學化學工程研究所 (2000) [31] 尹宗凡, 蒙脫土界面改質對對位聚苯乙烯奈米複合材料結晶態之研究, 義守大學材料科學與工程學系 (2001) [32] G. Sun, G. Chen, Z. Liu, M. Chen, Carbon, 48, 1434 (2010) [33] A. Sorrentino, L. Vertuccio, V. Vittoria, Express Polymer Letters, 4, 339 (2010) [34] 詹益池等人, 2000年海峽兩岸高分子學術研討會, 高雄市, 631, (2000) [35] M. H. Kim, C. Park, W. M. Choi, J. W. Lee, J. G. Lim, O. O. Park, J M. Kim, Journal of Applied Polymer Science, 92, 2144 (2004) [36] S. Kumar, P. Singh, R. G. Sonkawade, K. Awasthi, R. Kumar, Radiation Physics and Chemistry, 94, 49 (2014) [37] W. Ma, J. Yu, J. He, Polymer, 46, 11104 (2005)
摘要: Syndiotactic polystyrene (sPS), a crystalline polymer with a high melting point, exhibits four different polymorphic crystalline behavior, namely α, β, γ and δ. The α- and β-form, both containing planar zigzag chains with the all-trans conformation, can be obtained from the melt or glass state of sPS under different thermal crystallization conditions. For the γ and δ forms, the molecular chains have the helical conformation, which is strongly depended on the solution treatment. The sPS/montmorillonite (MMT) nanocomposites prepared by modified MMT were well dispered in sPS. X-ray diffraction data show the montmorillonite are intercalated into the sPS molecular chain with the interlayered spacing of 3.74 nm. TEM micrographs shows the montmorillonite was well distributed in sPS/MMT nanocomposites. XRD analysis operated from room temperature to 250℃, was perfomed to investigate the structural changes in sPS. The δ form can be obtained by supplying 1,2,4-Trichlorobenzene (TCB) in sPS. By heating the δ form above 110℃, it can be transformed to the γ form. This γ form was further transferred into the α form by heat treatment over 190℃. The in-situ FTIR results were also observed a similar transition temperature of crystallization. The results indicate that the addition of more than 2wt% montmorillonite induces α-form at room temperature. With the continuous increase of montmorillonite content, the transformation temperature was reduced from 190℃ to 130℃. TGA results revealed the thermal properties of sPS/MMT composites were improved by increasing content of MMT. DSC scans were used to investigate the nonisothermal crystallization behavior and crystallization kinetics mechanism. The addition of MMT into sPS matrices induces faster crystallization rate. These results of sPS/MMT nanocomposites shows that the addition of MMT caused heterogeneous nucleation. 1 wt% MMT-containing sPS/MMT nanocomposites shows the highest crystallization peak temperature, but the addition of more MMT into sPS matrix causes lower crystallization peak temperature. These results indicate that MMT also cause steric hindrance and reduces the transportation ability of polymer chains during crystallization processes. For nonisothermal crystallization processes, the crystallization parameters k, n and activation energy can be analyzed by using Ozawa equation to understand the influence of the addition of modified MMT into sPS.
對位聚苯乙烯 (Syndiotactic polystyrene, sPS) 為一種結晶性高分子,具有高熔點,並且隨結晶環境的不同,會有α、β、γ、δ四種結晶形態產生;α、β晶相一般為熱熔結晶時形成,屬於TTTT平面鋸曲狀結構,而γ、δ晶型則屬於立體螺旋結構,需在溶劑誘導下才會產生。 本研究利用改質蒙脫土 (Montmorillonite, MMT) 均勻分散在對位聚苯乙烯中,製備對位聚苯乙烯/蒙脫土奈米複合材料。藉X光繞射結果得知,蒙脫土經改質後層間距離被撐開至3.74 nm;以穿透式電子顯微鏡觀察,蒙脫土在對位聚苯乙烯基材中呈現均勻分散而無明顯團聚現象發生。 我們利用X光繞射分析儀 (X-Ray diffraction, XRD) 搭載溫控加熱器,分析由室溫升溫至250℃,觀察sPS及sPS/MMT複材的結晶結構變化,首先藉由溶劑1,2,4-三氯苯 (1,2,4-Trichlorobenzene, TCB) 誘導sPS形成δ晶型,在升溫至110℃可得到γ晶型,再將溫度升高至190℃之後轉變為α晶型,變溫FTIR之結果也可觀察到類似變溫XRD的晶相轉變趨勢。本研究發現,sPS/MMT複材中添加2%以上的蒙脫土會在室溫下形成部分α晶型,且隨著蒙脫土含量的增加,會降低α-form的轉換區間溫度由190℃降至130℃。利用熱重損失儀 (Thermogravimetric Analysis, TGA) 的結果中發現隨著MMT含量的增加,複材熱穩定性質得到明顯的提升。 我們也以微差掃描式熱分析儀 (Different Scanning Calorimeter, DSC) 研究sPS及sPS/MMT奈米複材的非等溫結晶行為及動力學機制。從結果中發現添加蒙脫土可使sPS結晶行為提早發生,顯示MMT在sPS基材中扮演異質成核的角色,但是sPS添加1wt% MMT時的結晶峰溫度達到最高,隨著MMT添加量的上升,高分子的結晶溫度並無進一步的提升,代表MMT也在結晶成長過程中扮演著干擾sPS分子鏈段排列結晶的立體空間障礙而影響整體結晶。在非等溫結晶動力學部分,本研究以Ozawa equation 來進行探討sPS及sPS/MMT複材的結晶指數 (n)、結晶速率常數 (k) 及活化能的變化,加以瞭解添加改質MMT對sPS基材所產生的影響。
URI: http://hdl.handle.net/11455/92014
其他識別: U0005-2508201522465000
文章公開時間: 10000-01-01
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.