Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92020
標題: Mg-Fe-LDH 與SiO2添加於含CaCO3/Ca3(SiO4)O之隔熱防蝕塗層並將其噴塗於鎂合金AZ91D表面上之特性研究
Mg-Fe layer double hydroxide/SiO2 added to CaCO3/Ca3(SiO4)O powder for thermal barrier-corrosion prevention spray coating on AZ91D magnesium alloy
作者: 林柏諭
Bo-Yu Lin
關鍵字: AZ91D 鎂合金
Mg-Fe LDH
隔熱防蝕噴覆層
AZ91D magnesium alloy
Mg-Fe LDH
thermal barrier-corrosion prevention spray coating
引用: [1] M. Kulekci, The International Journal of Advanced Manufacturing Technology, 39 (2008) 851-865. [2] E.F. Emley, Principles of magnesium technology, 1966. [3] Y. Kojima, Materials transactions-JIM, 42 (2001) 1154-1159. [4] E. Aghion, N. Moscovitch, A. Arnon, Materials Science and Engineering: A, 447 (2007) 341-346. [5] A.A. Luo, Journal of Magnesium and Alloys, 1 (2013) 2-22. [6] K.H. Yang, M.D. Ger, W.H. Hwu, Y. Sung, Y.C. Liu, Materials Chemistry and Physics, 101 (2007) 480-485. [7] Y. Zhang, C. Yan, Surface and Coatings Technology, 201 (2006) 2381-2386. [8] D.A. Jones, Principles and prevention of corrosion, Prentice Hall, 1996. [9] J.E. Gray, B. Luan, Journal of Alloys and Compounds, 336 (2002) 88-113. [10] C.S. Lin, C.Y. Lee, W.C. Li, Y. Chen, G.N. Fang, Journal of The Electrochemical Society, 153 (2006) B90-B96. [11] Z. Liu, W. Gao, Surface and Coatings Technology, 200 (2006) 5087-5093. [12] W.-J. Cheong, B.L. Luan, D.W. Shoesmith, Corrosion Science, 49 (2007) 1777-1798. [13] R. Ambat, W. Zhou, Surface and Coatings Technology, 179 (2004) 124-134. [14] Y. Liu, Z. Wei, F. Yang, Z. Zhang, Journal of Alloys and Compounds, 509 (2011) 6440-6446. [15] B.-L. Yu, J.-Y. Uan, Scripta Materialia, 54 (2006) 1253-1257. [16] K.T. Rie, J. Wöhle, Surface and Coatings Technology, 112 (1999) 226-229. [17] T. Ishizaki, J. Hieda, N. Saito, N. Saito, O. Takai, Electrochimica Acta, 55 (2010) 7094-7101. [18] J. Lin, K. Jeng, J. Uan, Corrosion Science, 53 (2011) 3832-3839. [19] J. Lin, J. Uan, Corrosion science, 51 (2009) 1181-1188. [20] J.-H. Syu, J.-Y. Uan, M.-C. Lin, Z.-Y. Lin, Corrosion Science, 68 (2013) 238-248. [21] M.M. Avedesian, H. Baker, ASM international, 274 (1999). [22] D.C. Sharma, C. Chatterjee, C.P. Sharma, Plant Science, 111 (1995) 145-151. [23] C.S. Lin, C.Y. Lee, W.C. Li, Y.S. Chen, G.N. Fang, Journal of The Electrochemical Society, 153 (2006) B90-B96. [24] E. Directive, Official Journal of the European Union, 13 (2003) L37. [25] V.R.L. Constantino, T.J. Pinnavaia, Inorganic Chemistry, 34 (1995) 883-892. [26] F. Cavani, F. Trifirò, A. Vaccari, Catalysis today, 11 (1991) 173-301. [27] U. Olsbye, D. Akporiaye, E. Rytter, M. R?nnekleiv, E. Tangstad, Applied Catalysis A: General, 224 (2002) 39-49. [28] C. Qi, J.C. Amphlett, B.A. Peppley, Applied Catalysis A: General, 302 (2006) 237-243. [29] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, M. Crocker, Catalysis Letters, 115 (2007) 56-61. [30] S. Bhattacharjee, T.J. Dines, J.A. Anderson, The Journal of Physical Chemistry C, 112 (2008) 14124-14130. [31] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker, T.J. Toops, Applied Catalysis B: Environmental, 82 (2008) 120-130. [32] M.-Q. Zhao, Q. Zhang, J.-Q. Huang, J.-Q. Nie, F. Wei, Carbon, 48 (2010) 3260-3270. [33] Y. Liu, K. Murata, T. Hanaoka, M. Inaba, K. Sakanishi, Journal of Catalysis, 248 (2007) 277-287. [34] F. Zhang, X. Xiang, F. Li, X. Duan, Catalysis Surveys from Asia, 12 (2008) 253-265. [35] K. Okamoto, T. Sasaki, T. Fujita, N. Iyi, Journal of Materials Chemistry, 16 (2006) 1608-1616. [36] J.H. Lee, S.W. Rhee, D.-Y. Jung, Bull. Korean Chem. Soc, 26 (2005) 249. [37] Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Journal of the American Chemical Society, 128 (2006) 4872-4880. [38] F. Bruna, R. Celis, M. Real, J. Cornejo, Journal of Hazardous Materials, 225–226 (2012) 74-80. [39] J. Zhou, Y. Cheng, J. Yu, G. Liu, Journal of Materials Chemistry, 21 (2011) 19353-19361. [40] L.C. Hsu, S.L. Wang, Y.M. Tzou, C.F. Lin, J.H. Chen, Journal of Hazardous Materials, 142 (2007) 242-249. [41] Y. Wang, H. Gao, Journal of Colloid and Interface Science, 301 (2006) 19-26. [42] K. Kuzawa, Y.-J. Jung, Y. Kiso, T. Yamada, M. Nagai, T.-G. Lee, Chemosphere, 62 (2006) 45-52. [43] H. Chen, C. Mousty, S. Cosnier, C. Silveira, J.J.G. Moura, M.G. Almeida, Electrochemistry Communications, 9 (2007) 2240-2245. [44] X. Li, J. Liu, X. Ji, J. Jiang, R. Ding, Y. Hu, A. Hu, X. Huang, Sensors and Actuators B: Chemical, 147 (2010) 241-247. [45] M. Darder, M. López-Blanco, P. Aranda, F. Leroux, E. Ruiz-Hitzky, Chemistry of Materials, 17 (2005) 1969-1977. [46] C. Forano, S. Vial, C. Mousty, Current Nanoscience, 2 (2006) 283-294. [47] B. Li, J. He, D. G. Evans, X. Duan, Applied Clay Science, 27 (2004) 199-207. [48] J.-H. Choy, J.-S. Jung, J.-M. Oh, M. Park, J. Jeong, Y.-K. Kang, O.-J. Han, Biomaterials, 25 (2004) 3059-3064. [49] J.-H. Choy, S.-J. Choi, J.-M. Oh, T. Park, Applied Clay Science, 36 (2007) 122-132. [50] M. del Arco, S. Gutiérrez, C. Martín, V. Rives, J. Rocha, Journal of Solid State Chemistry, 177 (2004) 3954-3962. [51] G. Williams, H.N. McMurray, Electrochemical and solid-state letters, 7 (2004) B13-B15. [52] R.G. Buchheit, H. Guan, S. Mahajanam, F. Wong, Progress in Organic Coatings, 47 (2003) 174-182. [53] W. Qudong, C. Wenzhou, Z. Xiaoqin, L. Yizhen, D. Wenjiang, Z. Yanping, X. Xiaoping, M. Mabuchi, Journal of Materials Science, 36 (2001) 3035-3040. [54] I. Polmear, JIM, Materials Transactions, 37 (1996) 12-31. [55] Y.-J. Chuang, Y.-H. Chuang, C.-Y. Lin, Materials & Design, 30 (2009) 2576-2583. [56] M.C. Yew, N.H. Ramli Sulong, Materials & Design, 34 (2012) 719-724. [57] Z. Wang, E. Han, W. Ke, Corrosion Science, 49 (2007) 2237-2253. [58] C.M.C. Pereira, M. Herrero, F.M. Labajos, A.T. Marques, V. Rives, Polymer Degradation and Stability, 94 (2009) 939-946. [59] M. Zammarano, M. Franceschi, S. Bellayer, J.W. Gilman, S. Meriani, Polymer, 46 (2005) 9314-9328. [60] D.-Y. Wang, A. Das, F.R. Costa, A. Leuteritz, Y.-Z. Wang, U. Wagenknecht, G. Heinrich, Langmuir, 26 (2010) 14162-14169. [61] D.-Y. Wang, A. Leuteritz, Y.-Z. Wang, U. Wagenknecht, G. Heinrich, Polymer Degradation and Stability, 95 (2010) 2474-2480. [62] D.-Y. Wang, A. Das, A. Leuteritz, R.N. Mahaling, D. Jehnichen, U. Wagenknecht, G. Heinrich, RSC Advances, 2 (2012) 3927-3933. [63] C.M. Becker, A.D. Gabbardo, F. Wypych, S.C. Amico, Composites Part A: Applied Science and Manufacturing, 42 (2011) 196-202. [64] O.P. Ferreira, O.L. Alves, D.X. Gouveia, A.G. Souza Filho, J.A.C. de Paiva, J.M. Filho, Journal of Solid State Chemistry, 177 (2004) 3058-3069. [65] A.C. Alfrey, G.R. LeGendre, W.D. Kaehny, New England Journal of Medicine, 294 (1976) 184-188. [66] C.-M. Jiao, Z.-Z. Wang, X.-L. Chen, Y. Hu, Journal of Applied Polymer Science, 107 (2008) 2626-2631. [67] J.-K. Lin, J.-Y. Uan, C.-P. Wu, H.-H. Huang, Journal of Materials Chemistry, 21 (2011) 5011-5020. [68] 內政部, 建築研究所, 營建署, 建築技術規則, 撰者, 1998. [69] A. Hermansson, T. Hjertberg, B.-Å . Sultan, Fire and Materials, 27 (2003) 51-70. [70] J.J. Thomas, H.M. Jennings, J.J. Chen, The Journal of Physical Chemistry C, 113 (2009) 4327-4334. [71] H. Huang, M. Tian, L. Liu, Z. He, Z. Chen, L. Zhang, Journal of Applied Polymer Science, 99 (2006) 3203-3209. [72] L. Chen, Y.-Z. Wang, Polymers for Advanced Technologies, 21 (2010) 1-26. [73] T.-J. LIU, G.-F. QIAO, D.-J. ZOU, Journal of Functional Materials, 7 (2011) 007. [74] K. Sobolev, I. Flores, L.M. Torres-Martinez, P.L. Valdez, E. Zarazua, E.L. Cuellar, Nanotechnology in Construction 3, (2009) 139-148. [75] H. Shi, F. Liu, L. Yang, E. Han, Progress in Organic Coatings, 62 (2008) 359-368. [76] A. Kumar S, H. Bhandari, C. Sharma, F. Khatoon, S.K. Dhawan, Polymer International, 62 (2013) 1192-1201. [77] ASTM B117.Standard Practice for Operating Salt Spray (Fog) Apparatus, 1994. [78] A. Standard, D3359-09e2. Standard Test Methods for Measuring Adhesion by Tape Test, 2009. [79] ASTM D1002-10. Standard test method for apparent shear strength of Single-lap-joint adhesively bonded metal specimens by tension loading, 2011. [80] S. Sanghi, S. Sindhu, A. Agarwal, V.P. Seth, Radiation Effects and Defects in Solids, 159 (2004) 369-379. [81] Y. Ding, Z. Gui, J. Zhu, Y. Hu, Z. Wang, Materials Research Bulletin, 43 (2008) 3212-3220. [82] W. Tongamp, Q. Zhang, F. Saito, Journal of Materials Science, 42 (2007) 9210-9215. [83] J. Das, D. Das, G.P. Dash, K.M. Parida, Journal of Colloid and Interface Science, 251 (2002) 26-32. [84] R. Trujillano, M.J. Holgado, J.L. González, V. Rives, Solid State Sciences, 7 (2005) 931-935. [85] D. Wattanasiriwech, A. Saiton, S. Wattanasiriwech, Journal of Cleaner Production, 17 (2009) 1663-1668.
摘要: The Mg alloy applications for the automotive industry have received attention due to its light weight. Furthermore, magnesium alloys have high specific strength and low density. However, it has a poor corrosion resistance, and strength decreased rapidly when a fire occurs. Therefore, this study will improve corrosion resistance and thermal properties of AZ91D by the thermal barrier-corrosion prevention spray coating. In this research, the CaCO3/Ca3(SiO4)O-base powder mixed with SiO2 and Mg-Fe LDH powder to form a paste which sprayed on the surface of magnesium alloy AZ91D. The result of corrosion test show that the corrosion current density of 16 wt. % SiO2 addition was 12 μA•cm-2, 20 wt. % LDH addition was 8 μA•cm-2. Both conditions had a much higher the corrosion resistance than the raw material (AZ91D). The adhesion of coating increased with the drying time. Furthermore, the thermal barrier-corrosion prevention spray coating has a low thermal diffusivity than AZ91D (16 wt. % SiO2 addition was 2.9 mm2/s, AZ91D was 24.42 mm2/s). After Coating, the density of sample was about 1.84 g/cm3, only slightly higher than AZ91D (the density of AZ91D was about 1.8 g/cm3).
由於輕量化被視為節能減碳的關鍵之一,因此低密度、高比強度的鎂合金AZ91D 近來逐漸用於大型車架或運輸載具上。然而,其活性較高、耐腐蝕性差,遇高溫時,強度將快速下降,在應用上恐有安全疑慮。因此本研究將以CaCO3/Ca3(SiO4)O 為主的粉末與SiO2或Mg-Fe-LDH粉末分別依不同比例混合配置成漿後噴塗於鎂合金AZ91D 表面,給予鎂合金一隔熱防蝕噴覆層。並探討此噴覆層之防蝕、貼附性、熱擴散等性質。添加16 wt. % SiO2、20 wt.% LDH 之噴塗層經鹽霧試驗96 小時,腐蝕斑點面積在5%以下。極化曲線顯示添加16 wt. %SiO2、20 wt. % LDH 的防火塗層的平均腐蝕電流密度分別為12、8 μA•cm-2,比AZ91D具更慢的腐蝕速率。而結合力試驗結果顯示隨著陰乾天數增加隔熱防蝕噴覆層與基材間有較佳的結合力。另外,此隔熱防蝕噴覆層有助於降低熱擴散係數(添加16 wt. % SiO2 由24.42 mm2/s 降至2.9 mm2/s),具隔熱效果。而經噴塗隔熱防蝕層的試片密度約為1.84 g/cm3,只略高於AZ91D 試片之1.80 g/cm3,故可使AZ91D 保持輕量化之優勢。
URI: http://hdl.handle.net/11455/92020
其他識別: U0005-0107201516440700
文章公開時間: 2018-07-16
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.