Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92027
標題: 氨氣/乙烯比對以電漿輔助化學氣相沉積n型非晶質碳薄膜特性之影響
Effects of ammonia/ethylene ratios on characteristics of plasma enhanced chemical vapor deposition n-type amorphous carbon thin films
作者: 何英冉
Ying-Jan Ho
關鍵字: 
NO
引用: [1]J. Robertson, Adv. Phy ., 35 (1986) 317. [2]M. I. Katsnelson, Materialstoday , 10 (2007) 20. [3]S. Iijima, Nature , 354 (1991) 56. [4]H. Kroto, Rev. Mod. Phys. , 69 (1997) 703. [5]H. Zhu, J. Wei, K. Wang, and De. Wu, Sol. Energy Mater. Sol. Cells , 93 (2009) 1461. [6]J. Robertson, Mater. Sci. Eng. R , 37 (2002) 129. [7]J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva, J. Appl. Phys ., 82 (1997) 6024. [8]S. Aisrnberg and R. Chabot, J. Appl. Phys ., 42 (1971) 2953. [9]L. Holland and S. M. Ojha, Thin Solid Films , 38 (1976) 17. [10]J.V. Anguita, S.R.P. Silva, and W. Young , J. Appl. Phys ., 88 (2000) 5175. [11] R.C. Barklie, Diam. Relat. Mat ., 10 (2001) 174. [12] R.U.A. Khan, S.R.P. Silva, Diam. Relat. Mat ., 10 (2001) 1036. [13] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, and W.I. Milne, J. Appl. Phys ., 87 (2000) 789. [14] X.J. Su, Q. Zhao, S. Wang, and A. Bendavid, Surf. Coat. Technol ., 204 (2010) 2454. [15] M. Rusop, T. Soga, and T. Jimbo, Sol. Energy Mater. Sol. Cells , 90 (2006) 3214. [16] A. Liu, H. Wu, J. Zhu, J. Han, and L. Niu, Diam. Relat. Mat ., 17 (2008) 1927. [17] M. Hakovirta, R. Verda, X.M. He, and M. Nastasi, Diam. Relat. Mat. , 10 (2001) 1486. [18] P. Peng, X.D. Li, G.F. Yuan, W.Q. She, F. Cao, D. M. Yang, Y. Zhuo, J. Liao, S. L. Yang, and M .J. Yue, Mater. Lett ., 47 (2001) 171. [19] G.Y. Chen, J.S. Chen, Z. Sun, Y.J. Li, S.P. Lau, B.K. Tay, and J.W. Chai, Appl. Surf. Sci. , 180 (2001) 185. [20] V.I. Ivanov-Omskii, L.K. Panina, and S.G. Yastrebov Carbon , 38 (2000) 495. [21] Y.B. Zhang, S.P. Lau, L. Huang, an d B.K. Tay, Diam. Relat. Mat ., 15 (2006) 171. [22] W. D. Callister, Jr., “ Materials Science and Engineering: An Introduction ,” U.S.A. (2007) [23] M. J. Jackson, “ Microfabrication and Nanomanufacturing ,” CRC Press, Florida, U.S.A. (2006). [24] M. L. Hitchman, K. F. Jensen, “Chemical Vapor Deposition ,” Academic Press, San Diego, U.S.A. (1993). [25] A. Grill., “Cold Plasma in Materials Fabrication: From Fundamentals to Applications ,”. IEEE Press , New York, U.S.A. 1994. [26] Z. Sun, C.H. Lin, Y.L. Lee, J.R. Shi, B .K. Tay, X. Shi., Journal of Applied Physics , 87 (2000) 8122. [27] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L .G. Jacobsohn, F.L. Freire Jr., Journal of Non-Crystalline Solids , 338-340 (2004) 503. [28] G. Capote, F.L. Freire, L.G. J acobsohn, G. Mariotto., Diamond and Related Materials , 13 (2004) 1454. [29] H. Tahara, K.I. Minami, A. Murai, T. Yasui, T. Yos hikawa., Japanese Journal of Applied Physics , 34 (1995) Part 1, 4A: 1972. [30] M. Alaluf, J. Appelbaum, L. Klibanov, D. Brinkerb, D. Scheimanb, and N. Croitoru, Thin Solid Films , 256 (1995) l. [31] M.A. Alaluf, J. Appelbaum, M. Maharizi, A. Seidman, and N. Croitoru, Thin Solid Fiims , 303 (1997) 273. [32] M. Ohring, “Materials science of thin films ”, 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [33] V. Baranauskas, S.F. Durrant, M.C. Tosin, A.F. Peterlevitz, B.B. Li, and S.G. Castro, Thin Solid Films , 355 (1999) 157. [34] C. Aragón and J.A. Aguilera, Spectrochimica Acta Part B: Atomic Spectroscopy , 63 (2008) 893. [35] R.M. Silverstein, F.X. Webster, and D.J. Kiemle, “Spectrometric Identification of Organic Compounds ,” New Jersey, U.S.A. (2005). [36] E.C. Le Ru and P.G. Etchegoin, “Principles of Surface-Enhanced Raman Spectroscopy ,” Wellington, New Zealand (2009). [37] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, J. Appl. Phys ., 80 (1996) 440. [38] A.C. Ferrari and J. Robertson, Phys. Rev. B , 61 (2000) 14095. [39] M. Lejeune, M. Benlahsen, and R. Bouzerar, Appl. Phys. Lett., 84 (2004) 344. [40] C.D. Martino, F. Demichelis, and A. Tagliaferro, Diamond Relat. Mater. , 4 (1995) 1210. [41] Y. Kawashima and G. Katagiri , Phys. Rev. B , 52 (1995) 10053. [42] G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, Phys. Rev. B , 73 (2006) 125427. [43] C. Thomsen and S. Reich, Phys. Rev. Lett ., 85 (2000) 5214. [44] L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, and A. Jorio, Phys. Rev. Lett ., 93 (2004) 247401. [45] Z. Ning, S. Cheng, and S. Yang, Curr. Appl. Phys ., 2 (2002) 439. [46] C. Ye, Z. Ning, S. Cheng, Y. Xin, and S. Xu, Diam. Relat. Mat., 13 (2004) 191. [47] J. Tauc, R. Grigorovici, and A. Vancu, Phys. status solid B , 15 (1966) 627. [48] J. Robertson, J. Non-Cryst. Solids , 198 (1996) 615. [49] Rusli, J. Robertson, and G.A.J. Amaratunga, J. Appl. Phys ., 80 (1996) 2998. [50] H.C. Hsueh, H.C. Li, D. Chiang, S. Lee, Journal of The Electrochemical Society , 159 (2012) D77. [51] M.J. Chiang and M. H. Hon, Thin Solid Films , 516 (2008) 4765. [52] M. Kral, A. Ogino, K. Narushima, N. Inagaki, M. Yamashita, and M. Nagatsu, Journal of Applied Physics , 46 (2007) 7470. [53] K. J. Clay, S. P. Speakman, G. A. J. Amaratunga and S. R. P. Silva, Journal of Applied Physics , 79 (1996) 7227. [54] M.M. Larijani, F. Le Normand, O. Crégut, Applied Surface Science , 253 (2007) 4051. [55] Q. Shen, Y. Miyata, T. Suzuki, S. Morita, and K. Kitagawa, Physics of Plasma , 15 (2008) 073502. [56] K. Tachibana, M. Nishida, H. Harima, and Y. Urano, J. Phys. D: Appl. Phys ., 17 (1984) 1727. [57] H.C. Thejaswini, A. Majumdar, T.M. Tun, R. Hippler, Advances in Space Research , 48 (2011) 857. [58] C.I. Butoi, M.L. Steen, J.R.D. Peers, and E.R. Fisher, J. Phys. Chem. B , 105 (2001) 5957. [59] F. Arefi-Khonsari, J. Kurdi, M. Tatoulian, and J. Amouroux, Surf. Coat. Technol ., 142 (2001) 437. [60] J.K. Shin, C.S. Lee, K.R. Lee, and K.Y. Eun, Applied Physics Letters , 78 (2001) 631. [61] D. Papadimitriou, G. Roupakas, C.A. Dimitriadis, and S. Longothetidis, J. Appl. Phys. , 92 (2002) 870. [62] A.C. Ferrari, S.E. Rodil, and J. Robertson, Phys. Rev. B , 67 (2003) 155306. [63] P. M´erel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Appl. Surf. Sci. , 136 (1998) 105. [64] G.L. Du, N. Celini, F. Bergaya, and F. Poncin -Epaillard, Surf. Coat. Technol. , 201 (2007) 5815. [65] S. Kaciulius, Surf. Interface. Anal ., 44 (2012) 1155. [66] K. Nakanishi, Philippa H. Solomon, “Infrared Absorption Spectroscopy ,” (1977). [67] B. Fry, R. Ganitt, K. Tholke, C. Neill, R.H. Michener, F.J. Mersch and W. Brand, Rapid Communications in Mass Spectrometry , 10 , (1996) 953. [68] C. Oppedisano and A. Tagliaferro, Appl. Phys. Lett ., 75(1999) 3650. [69] A. Majumdar, S.C. Das, T. Shripathi, and R. Hippler, Chemical Physics Letters , 524 (2012) 62. [70] S.N. Das, and A.K. Pal, Semicond. Sci. Technol ., 21 (2006) 1557. [71] D. Song, E. C. Cho, G. Conibeer, C. Flynn, Y. Huang, and M. A. Green , Solar Energy Materials & Solar Cells , 92 (2008) 474. [72] V. Capek, and D. P. Sheehan, “ Challenges to The Second Low of Thermodynamics: Theory and Experiment ,” Springer, U.S.A. (2005).
摘要: This study investigates the effect of ammonia/eth ylene (NH3 /C2 H4 )mixtures on characteristics of nitrogen-doped amorphous hydrogenated carbon a-C:N films prepared by plasma enhanced chemical vapor deposition. The a-C:N films with identical thickness are deposited on p-type silicon (p-Si) substrates using different NH 3 /C2 H4 ratios. The microstructures, optical, and electrical properties of a-C:N films are evaluated. Furthermore, current density-voltage and capacitance density-voltage behaviors of a-C:N/p-Si devices are investigated. Experimental results indicate that as the NH 3 /C2 H4 ratio increases from 0 to 20, the nitrogen/carbon ratio increases from 0 to 31.7%. The nitrogen-carbon, nitrogen-hydrogen bonds, sp 2 carbon fraction, and dielectric constant of carbon films enlarge with increasing NH 3 /C2 H4 ratio, while the deposition rate, optical band gap, and resistivity of carbon films decrease. The a:C:N/p-Si device has an optimum electrical property at the NH3 /CH4 ratio of 5 with ideality factor of 1.5 .
本論文主要是以電漿輔助化學氣相沉積法沉積相同厚度的含氮n型非晶質碳薄膜於p型矽晶片,並探討不同NH3 /C2 H4比例對非晶質碳薄膜性質及a-C:N/p-Si元件特性之影響。本實驗針對非晶質碳薄膜的微觀結構、光學與電學性質進行量測分析,由電流電壓及電容電壓量測系統進行a-C:N/p-Si元件之pn接面特性研究。由結果發現,當NH3 /C2 H4比例由0增加至20 時,碳薄膜的沉積速率、光學能隙值及電阻率呈現下降趨勢;C≡ N與N-H鍵 結、N/C比 、sp 2C=C含量以及介電常數則呈現上升趨勢。 a-C:N/p-Si元件在NH3/C2 H4比例5時擁有最佳理 想因子值1.5。
URI: http://hdl.handle.net/11455/92027
其他識別: U0005-0107201513554300
文章公開時間: 2018-07-16
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.