Please use this identifier to cite or link to this item:
標題: MoC(200)+C中間層於FePt-C磁記錄媒體之應用
FePt-C magnetic recording media on textured MoC(200)+C intermediate layer
作者: 曾荺婷
Yun-Ting Tseng
關鍵字: 磁記錄媒體
Magnetic recording media
Perpendicular anisotropy
引用: [1] B. Poulsen,U.S.Patent 661,619.(1990) [2] A. Moser, K. Takano, D. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, ... & E. Fullerton, (2002). Magnetic recording: advancing into the future. Journal of Physics D: Applied Physics, 35(19), R157. [3] J. Livingston, Scientific American,pp.80-5, Nov, (1998). [4] T. Suzuki, T. Kiya, N. Honda, & K. Ouchi, 'Fe–Pt perpendicular double-layered media with high recording resolution,' Journal of magnetism and magnetic materials, 235(1), 312-318 (2001) [5] B. Terris, & T. Thomson, 'Nanofabricated and self-assembled magnetic structures as data storage media,' Journal of physics D: Applied physics, 38(12), R199 (2005) [6] M. Alex, A. Tselikov, T. Mcdaniel, N. Deeman, T. Valet & D. Chen' Characteristics of thermally assisted magnetic recording,' IEEE transactions on magnetics, 37(4), 1244-1249 (2001) [7] R. Wood, 'Future hard disk drive systems,' Journal of magnetism and magnetic materials, 321(6), 555-561 (2009) [8] D. Goll & T. Bublat, 'Large‐area hard magnetic L10‐FePt and composite L10‐FePt based nanopatterns.' physica status solidi (a), 210(7), 1261-1271 (2003) [9] 引用資料來源網址'' [10] S. H. Charap, P. L. Lu, & Y. He, 'Thermal stability of recorded information at high densities.' Magnetics, IEEE Transactions on, 33(1), 978-983 (1997) [11] S. I. Iwasaki, & K. Takemura, 'An analysis for the circular mode of magnetization in short wavelength recording,' Magnetics, IEEE Transactions on,11(5), 1173-1175 (1975) [12] 引用資料來源網址'' [13] D. Litvinov, M. H. Kryder, & S. Khizroev, 'Recording physics of perpendicular media: soft underlayers,' Journal of Magnetism and Magnetic Materials, 232(1), 84-90 (2001) [14] D. Weller, O. Mosendz, G. Parker, S. Pisana, & T. S. Santos, 'L10 FePtX–Y media for heat‐assisted magnetic recording,' physica status solidi (a),210(7), 1245-1260 (2013) [15] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka, H. Mutoh, and N. Yoshikawa, 'Future options for HDD storage,' Magnetics, IEEE Transactions on, vol. 45, p. 3816-3822 (2009) [16] 引用資料來源網址'' [17] 引用資料來源網址'' [18] Kryder, M. H., Gage, E. C., McDaniel, T. W., Challener, W. A., Rottmayer, R. E., Ju, G., ... & Erden, M. F, 'Heat assisted magnetic recording,' IEEE, 96(11), 1810-1835 (2008) [19] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, ... & M. F. Doerner, 'High K u materials approach to 100 Gbits/in2,' Magnetics, IEEE Transactions on, 36(1), 10-15 (2000) [20] J. Chen, B. Lim, and J. Wang, 'Controlling the crystallographic orientation and the axis of magnetic anisotropy in L10 FePt films,' Applied physics letters, vol. 81, pp. 1848-1850 (2002) [21] J. Chen, Y. Xu, and J. Wang, 'Effect of Pt buffer layer on structural and magnetic properties of FePt thin films,' Journal of applied physics, vol. 93, pp. 1661-1665 (2003) [22] J. Chen, B. Lim, and T. Zhou, 'Effect of ultrahigh vacuum on ordering temperature, crystallographic and magnetic properties of L10 FePt (001) film on a CrRu underlayer,' Journal of Vacuum Science & Technology A, vol. 23, pp. 184-189 (2004) [23] J. Chen, B. Lim, Y. Ding, and G. Chow, 'Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording,' Journal of magnetism and magnetic materials, vol. 303, pp. 309-317 (2006) [24] J. Chen, B. Lim, J. Hu, Y. Lim, B. Liu, and G. Chow, 'High coercivity L10 FePt films with perpendicular anisotropy deposited on glass substrate at reduced temperature,' Applied physics letters, vol. 90, pp. 042508-042508-3 (2007) [25] B. Lim, J. Chen, J. Hu, Y. Lim, B. Liu, G. Chow, and G. Ju, 'Improvement of chemical ordering of FePt (001) oriented films by MgO buffer layer,' Journal of Applied Physics, vol. 103, pp. 07E143-07E143-3 (2008) [26] J. Chen, J. Hu, B. Lim, W. Phyoe, B. Liu, and G. Ju, 'Structure and magnetic properties of L10 FePt film with Ag heat sink layer,' Journal of Applied Physics, vol. 105, 07B724 (2009) [27] K. Cher, T. Zhou, W. Lim, J. Hu, and P. Lwin, 'TiN and TiC Intermediate Layers for FePt-C-Based Magnetic Recording Media,' Magnetics, IEEE Transactions on, vol. 49, pp. 2586-2589 (2013) [28] H. Li, K. Dong, Y. Peng, G. Ju, G. Chow, J. Chen, “Microstructures and Magnetic Properties of FePt Thin Films on TiON Intermediate Layer,” IEEE Transactions on magnetics, vol. 50, no. 3, march 2014. [29] H. Pierson, Handbook of Refractory Carbides & Nitrides (Noyes Publications, New Jersey, 1996), p. 111. [30] Hansen, M., Anderko, K., & Salzberg, H. W, 'Constitution of binary alloys. Journal of the Electrochemical Society,' 105(12), 260C-261C (1958) [31] Kawald, U., Zemke, W., Bach, H., Pelzl, J., & Saunders, G. A. 'Elastic constants and martensitic phase transitions in FePt and FeNiPt invar alloys.' Physica B: Condensed Matter, 161(1), 72-74 (1989) [32] B. Warren (1990), X-ray Diffraction, Dover, New York, p. 227. [33] Y. Feng, D. Laughlin, and D. Lambeth, 'Formation of crystallographic texture in rf sputter‐deposited Cr thin films,' Journal of applied physics, vol. 76, pp. 7311-7316 (1994) [34] Y. Xu, J. Chen, and J. Wang, 'In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr 100-x Ru x underlayer at low substrate temperature,' Applied physics letters, vol. 80, pp. Y-3327 (2002) [35] 引用資料來源網址'' [36] T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, Binary alloy phase diagrams. Metals Park, Ohio: American Society for Metals, 1986. [37] Y. Liu, Y. Jiang, J. Feng, and R. Zhou, 'Elasticity, electronic properties and hardness of MoC investigated by first principles calculations,' Physica B: Condensed Matter, vol. 419, pp. 45-50 (2013) [38] H. W. Hugosson, O. Eriksson, U. Jansson, A. V. Ruban, P. Souvatzis, and I. Abrikosov, 'Surface energies and work functions of the transition metal carbides,' Surface science, vol. 557, pp. 243-254 (2004) [39] 金重勳、李景明、張慶瑞(2002),磁性技術手冊,第二章,P.5~7 [40] N. A. Spaldin(2011), Magnetic Material,p.17. [41] Soshin Chikazumi 著, 張煦, 李學養合譯, 磁性物理學 [42] B.D. Cullity(1972), Introduction to magnetic materials, Wesley,ch7. [43] D.E.Gray (1972), McGraw-Hill American Institute of Physics Handbook. [44] M.J. Clerk(1954), Atreatise on Electicity and magnetism, Vol.2.1006. [45] 蕭世男,初始應力/應變態對鐵鉑薄膜其序化轉變與動力學之影響,逢甲大學博士論文,中華民國一百年三月。 [46] Wu, Y. C., Wang, L. W., Lai, C. H., & Chang, C. R, 'Control of microstructure in (001)-orientated FePt–SiO 2 granular films,' Journal of Applied Physics, 103(7), 07E140-07E140 (2008) [47] Lai, C. H., Yang, C. H., Chiang, C. C., Balaji, T., & Tseng, T. K, 'Dynamic stress-induced low-temperature ordering of FePt,' Applied physics letters, 85(19), 4430-4432 (2004) [48] Yang, E., Laughlin, D. E., & Zhu, J. G, 'Correction of order parameter calculations for FePt perpendicular thin films,' Magnetics, IEEE Transactions on, 48(1), 7-12 (2012) [49] Takanashi, K., Watanabe, M., & Fujimori, H, 'Correlation between magnetooptical Kerr rotation and anomalous Hall effect in FePt/Pt multilayer films,' Journal of Magnetism and Magnetic Materials, 104, 1749-1750 (1992) [50] Visokay, M. R., Lairson, B. M., Clemens, B. M., & Sinclair, R, 'Microstructural analysis of magnetic Fe/Pt multilayer thin films by transmission electron microscopy,' Journal of magnetism and magnetic materials, 126(1), 136-140 (1993) [51] Mitani, S., Takanashi, K., Sano, M., Fujimori, H., Osawa, A., & Nakajima, H, 'Perpendicular magnetic anisotropy and magneto-optical Kerr rotation in FePt (001) monoatomic multilayers,' Journal of magnetism and magnetic materials, 148(1), 163-164 (1995) [52] Shima, T., Takanashi, K., Takahashi, Y. K., & Hono, K, 'Preparation and magnetic properties of highly coercive FePt films,' Applied physics letters, 81(6), 1050-1052 (2002) [53] Shima, T., Moriguchi, T., Mitani, S., & Takanashi, K, 'Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition,' Applied physics letters, 80(2), 288-290 (2002) [54] Y. Ding, J. chen, E. Liu, J. Wang, 'Dependence of microstructure and magnetic properties of FePt films Cr90Ru10 underlayers, ' Journal of Magnetism and Magnetic Materials 285 (2005) 443-449 [55] J. Tsai, Q. Luo, P. Chen, Y. Chen, 'MoC intermediate layer for FePt magnetic recording media,' Journal of Applied Physics 115, 17B715 (2014) [56] J. Tsai, Q. Luo, P. Chen, Y. Tseng, “Magnetic properties and microstructure of FePt/MoC/CrRu films,” Journal of Magnetism and Magnetic Materials 382 (2015) 335-341 [57] Copyright © 2012 University of Massachusetts Amherst. [58] 引用資料來源網址', Bruker AXS' [59] 引用資料來源網址'' [60] B. D. Cullity, C. D. Graham(2009), 'Introduction to Magnetic Materials,' second edition, p.68. [61] 引用資料來源網址'' [62] 引用資料來源網址'' [63] 引用資料來源網址'國立中興大學奈米中心網站' [64] D. B. W. a. C. B. Carter(1996), Transmission Electron Microscopy: Plenum Press, New York and London. [65] 引用資料來源'國立中興大學材料系貴儀網頁' [66] 引用資料來源網址'' [67] 林智仁 and 羅聖全, '場發射穿透式電子顯微鏡簡介,' 工業材料雜誌, vol. 201, pp. 90-98 (2003) [68] M. Ohring, The materials science of thin films: Boston : Academic Press, 1992. [69] B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, A. Ajan, and K. Hono, 'Electrically conductive (Mg0.2Ti0.8)O underlayer to grow FePt-based perpendicular recording media on glass substrates,' Journal of Applied Physics, 113, 203907(2013) [70] I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, 'Microstructural evolution during film growth,' J. Vac. Sci. Technol. vol. 21, p.S117 (2003)
摘要: The L10-ordered FePt thin films was deposited on Mo40C60/CrRu/glass at substrate by using magnetron sputtering with DC power supply. The Mo40C60 target was used to form MoC and C two phase after deposition. Our experiment can be divide into two parts. In the first part, we changed the deposited temperature of FePt films from 320oC to 440oC with the structure of FePt(10 nm)/ Mo40C60(5 nm)/CrRu(80 nm)/glass. The FePt showed great perpendicular magnetization at 425oC. We fixed the deposited temperature at 425oC and changed the thickness of Mo40C60. The intensity of FePt (001) and the out-of-plane coercivity both increased with Mo40C60 thickness. And the MoC (200) peak appeared at 25 nm, suggested that the Mo40C60 intermediate layer could be both the diffusion barrier and epitaxial layer. We changed the thickness of FePt with the structure of FePt(t nm)/ Mo40C60(10 nm)/CrRu(80 nm)/glass. The highest coercivity value was 7.2 kOe when FePt thickness was 4 nm. In the second part, the thickness of Mo40C60 was increased to 25 nm, and changed the CrRu thickness from 20 to 80 nm, the ordering degree of FePt decrease with the decrease of the CrRu thickness and showed best perpendicular magnetization and anisotropic at CrRu was 60 nm with the coercivity of 7.5kOe. Than changed the thickness of FePt from 4 to 10 nm with the structure of FePt(t nm)/ Mo40C60(25 nm)/CrRu(60 nm)/glass. The results is similar to the previous, and the perpendicular anisotropy of 1.7x107 erg/cm3 was estimated by the loops in 10 nm thick FePt film.In the final part, The FePt-Mo40C60(x vol%)/ Mo40C60/CrRu (x=0, 7, 10, 15, 20, 25) films were deposited on glass substrates. Compared to 10nm thick FePt film, the out-of-plane coercivity was from 7.5kOe to 7.8kOe in FePt- Mo40C60(7 vol%) film. When Mo40C60 was added more than 10 vol%, the ordering degree and perpendicular magnetic anisotropy were degraded. After added Mo40C60, the FePt granular structure was observed but the cross-sectional image was changed from island like structure in FePt- Mo40C60(7 vol%) film to continuous layer in FePt- Mo40C60(15, 25 vol%) films.
本實驗使用直流磁控濺鍍系統,先將玻璃基板加熱至200oC持溫五分鐘,依序沉積CrRu底層、MoC中間層,以及FePt磁記錄層,而中間層材料選用Mo40C60之靶材,沉積後會形成MoC與C兩個相,研究其於CrRu/FePt的磊晶膜層系統中對FePt之序化有何影響。此實驗分成兩大部分:第一部分為於玻璃基板上製備膜層結構為CrRu(80 nm)/ Mo40C60(5 nm)/FePt(10 nm)之薄膜,改變FePt沉積溫度T = 320~440oC,發現於380oC時開始序化,並於425oC得到最佳磁性質。固定沉積溫度425oC進而改變中間層Mo40C60的膜層厚度0~25 nm,實驗結果發現隨Mo40C60厚度增加,FePt (001)織構有效提升,垂直膜面之矯頑磁力隨之升高,且發現Mo40C60厚度達25 nm時出現MoC (200)織構,表示當Mo40C60膜層有一定厚度時可提供兩種功能:一為促使FePt (001)織構序化之磊晶層,二為阻擋底層Cr原子擴散之擴散阻障層。最後以膜層結構為CrRu(80 nm)/ Mo40C60(10 nm)/FePt(t nm)之薄膜來改變FePt厚度,結果發現隨膜厚降低因應變能增加使序化度提升,垂直矯頑磁力進而提升,於FePt 4 nm時垂直矯頑磁力達到7.2kOe。 第二部分為將中間層Mo40C60厚度增加至25 nm,改變底層CrRu膜層厚度20~80 nm,發現FePt序化度隨CrRu厚度下降而降低,並於CrRu厚度60 nm時得到最佳磁性質,垂直矯頑磁力達到7.5 kOe。因此接下來我們以CrRu(60 nm)/ Mo40C60(25 nm)/FePt(t nm)此膜層結構之薄膜來改變FePt厚度,實驗結果與上一個部分之結果相似,於FePt 4 nm時得到最佳垂直矯頑磁力9.2kOe,並以FePt 10 nm之樣品計算其磁晶各異向能約為1.7x107 erg/cm3。最後於頂層FePt膜層中摻雜Mo40C60進行共鍍,結果發現當Mo40C60微量摻雜7%時,垂直矯頑磁力由7.5kOe變成7.8kOe,但若摻雜至10%以上,其序化度及垂直磁異向性皆降低。由顯微結構可觀察到摻雜Mo40C60後呈現顆粒狀薄膜,但當Mo40C60摻雜量由7%增加至15%以上時,橫截面圖顯示顆粒由原本的島狀型態轉變為連續膜型態。
其他識別: U0005-0807201515254800
文章公開時間: 2018-07-13
Appears in Collections:材料科學與工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.