Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92052
標題: 生醫陶瓷塗層修飾鈦合金表面在牙冠之應用
Biomedical ceramic coatings for surface modification on titanium alloy applied in dental crowns
作者: 鄒曜隆
Yao-Long Zou
關鍵字: 鈦合金
牙科瓷
鈦氧化
牙科瓷接著劑
陶瓷塗層
Ti alloy
Dental porcelain
Ti oxidation
Dental bonding agent
Ceramic layer
引用: [1] K. J. Anusavice: “Dental ceramics”, Phillips’ Science of Dental Materials, 583-618 (1996). [2] H. Hamanaka, H. Doi, T. Yoneyama, and 0. Okuno, J Dent Res 68(11):1529-1533, November, 1989 [3] Kazuo IDA, Toshihiro Togaya, Sadami Tsutsu, Masatoshi Takeuchi, Dental Materials Journal 1(1): 8-21, 1982 [4] Seiji Ban, Taizo Watanabe, Noriyasu Mizutani, Hisao Fukui, Jiro Hasegawa and Hiroshi Nakamura, Dental Materials Journal 19 (4): 352-362, 2000 [5] Ida K, Togaya, Tsutsumi, Takeuchi,Dental Materials Journal; 1982 Dec;1(1):8-21. [6] Blumenthal NC, Cosma V. Inhibition of apatite formation by titanium and vanadium ions. I Biomed Mater Res 1989; 23: 13-22. [7] Williams Dr. J Medical Eng Tech 1977; 1: 266-270. [8] Moran CA, Mullick FG, Florabel G, Ishak KG, Johnson, Human Path 1991; 22: 450-454. [9] Browne M, Gregson PJ, Biomaterials 1994; 11: 894-898. [10] Maurer AM, Merritt K, Brown SA., Journal Biomed Materials Res 1994;28: 241-246. [11] Seiji Ban, Taizo Watanabe, Noriyasu Mizutani, Hisao Fukui, Jiro Hasegawa, Hiroshi Nakamura, Dental Materials Journal; issn:0287-4547; vol.19; no.4; page.352-362; (2000) [12] Ida K, Tani Y, Tsutsumi S, Togaya T, Nambu T, Suese K, Kawazoe T, Nakamura M. Dent Mater J 1985;4:191-5. [13] Togaya T, Suzuki M, Tsutsumi S, Ida K., Dent Mater J 1983;2:210-9. [14] Nilson H, Bergman B, Bessing C, Lundqvist P, Andersson M., Int J Prosthodont 1994;7:115-9. [15] Lautenschlager EP, Monaghan P., Int Dent J 1993;43:245-53. [16] Okabe T, Her H., Cell Mater 1995;5:211-30. [17] Zhuo Cai, Ty Shafer, Ikuya Watanabe, Martha E. Nunn, Toru Oka, Biomaterials 24 (2003) 213–218 [18] Chotiros Kuphasuk, Yoshiki Oshida, Carl J. Andres, Suteera T.Hovijitra, Martin T. Barco and David T. Brown, The Journal of Prosthetic Dentistry February 2001 Volume 85, Issue 2, Pages 195–202 [19] Manfred F. Semlitsch, Heinz Weber, Robert M. Streicher and Rolf Schon, Biomaterials 1992, Vol. 13 No. 11 [20] R. C. Browne, Br J Ind Med. 1955 Jan; 12(1): 57–59. [21] Frank. H. Hulcher, Spectrophotometric Biol. Mater. 32 (1960) 1183. [22] J. L. MURRAY, in ''Phase Diagrams of Binary Titanium Alloys' (ASM International. Metals Park, OH, 1987) p. 188. [23] Idem, ibid., p. 319. [24] Xuanyong Liua, Paul K. Chub, Chuanxian Dinga, Materials Science and Engineering R 47 (2004) 49–121 [25] M. Ueda , M.M. a, Silva, C. Otani, H. Reuther, M. Yatsuzuka, C.M. Lepienski, L.A. Berni, Surface and Coatings Technology 169 –170 (2003) 408–410 [26] E. Kobayashi, T. J. Wang, H. Doi , T. Yoneyama, H. Hamanaka, Journal of Materials science: Materials in medicine 9 (1998) 567-574 [27] Doron Steinberg, Avigdor Klinger, David Kohavi, Michael N. Sela, Biomotericls 16 (1995) 1339-1343 [28] Zhuo Cai, Hiroshi Nakajim, Margaret Woldu, Anders Berglund, Maud Bergman, Toru Okabe, Biomaterials 20 (1999) 183-190 [29] M.A. Khan, R.L. Williams and D.F. Williams, Biomateria]s 17 (1996) 2117-2126 [30] Paul D. Bianco, Paul Ducheyne, John M. Cuckler, Biomateriols 17 (1996) 1937-1942 [31] Yu Zhang, Brian R. Lawn, E. Dianne Rekow andVan P. Thompson, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Volume 71B, Issue 2, pages 381–386, 15 November 2004 [32] T. Togaya, M. Suzuki, S. Tsutsumi and K. Ida: Dent. Mat. J. 2, 210-219 (1983). [33] H. Kimura, C. J. Horng and M. Okazaki: “Heat treatment effect on porcelain-titanium bond strength?, [34] H. Kimura, C. J. Horng, M. Okazaki and J. Takahashi: Dent. Mat. J. 9, 91-99 (1990). [35] M. Adachi, E. E. Parry and C. W. Fairhurst: J. Dent. Res. 69, 1230-1235 (1990). [36] Xuanyong Liua, Paul K. Chub, Chuanxian Dinga, Materials Science and Engineering R 47 (2004) 49–121 [37] M. Ueda , M.M. a, Silva, C. Otani, H. Reuther, M. Yatsuzuka, C.M. Lepienski, L.A. Berni, Surface and Coatings Technology 169 –170 (2003) 408–410 [38] E. Kobayashi, T. J. Wang, H. Doi , T. Yoneyama, H. Hamanaka, Journal of Materials science: Materials in medicine 9 (1998) 567-574 [39] Lavos-Valereto, Koè nig JR, Rossa JR., Marcantonio JR, Zavaglia, Journal of Materials science: Materials in medicine 12 (2001) 273-276 [40] John D. Jones, Makato Saigusa, Joseph E. Van Sickels, Billy Don Tiner, Wayne A. Gardner, San Antonio, Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997 Aug;84(2):137-41. [41] Belen Zalba, Jos''e Ma Marın, Luisa F. Cabeza, Harald Mehling, Applied Thermal Engineering 23 (2003) 251–283 [42] S.K. Yen, Journal of Electrochemical Society, 146, 1392-1397 (1999). [43] O. E. Petrov, E. Dyulgerova, L. Petrov and R. PoPova, Materials Letters, 48, 162-167 (2001). [44] S. K. Yen and T. Y. Huang, Materials Chemistry and Physics, 6, 214-221 (1998). [45] H. C. Hsu and S. K. Yen, Dental Materials, 14, 339-346 (1998). [46] S. K. Yen and C.C. Chang, Materials Chemistry and Physics, 77, 836-840 (2002). [47] C. M. Lin and S. K. Yen Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan. [48] S. K. Yen and C.C. Chang, Institude of Material Engineering, (1999) 779-783. [49] H.C.Hsu ,S. K. Yen, Journal of Materials Science: Materials in Medicine , (2001) 497-501. [50] Mustafa Aghazadeh, Journal of The Electrochemical Society, 159 (3) E53-E58 (2012) [51] Guijin Yang, Daqiang Gao, Jinlin Zhang, Jing Zhang, Zhenhua Shi, and Desheng Xue, The Journal of Physical Chemistry, 2011, 115 (34), pp 16814–16818 [52] J.F. Bartolome´, J.I. Beltra´n, C.F. Gutie´rrez-Gonza´lez, C. Pecharroma´n, M.C. Mun˜oz, J.S. Moya, Acta Materialia 56 (2008) 3358–3366 [53] J.F. Bartolome´ *, C.F. Gutie´rrez-Gonza´lez, C. Pecharroma´n, J.S. Moya, Acta Materialia 55 (2007) 5924–5933 [54] J.F. Bartolome´, J.I. Beltra´n, C.F. Gutie´rrez-Gonza´lez, C. Pecharroma´n, M.C. Mun˜oz, J.S. Moya, Acta Materialia 56 (2008) 3358–3366 [55] Hong-Yuan Wanga, Rui-Fu Zhu, Yu-Peng Lu, Gui-Yong Xiao, Xiao-Ni Ma, Ying Li, Applied Surface Science 282 (2013) 271– 280 [56] Y. Oishi and W. D. Kingery, J. Chem. Phys. (1960) Volume 33, Issue 2 [57] F. J. Keneshea, D. L. Douglass, Oxidation of Metals January 1971, Volume 3, Issue 1, pp 1-14
摘要: Denture teeth manufactured from mental substrate and ceramic are widely used to replace dental caries. Pure titanium and dental porcelains are widely employed as metal-ceramic restorations. However, the critical natural teeth obstructions in the practical applications, such as the serious oxidation of Ti at high temperature should be overcome, although commercial bonding agent has been used to reduce this problem. In this research we use a new process technology to prepare the ceramic bonding layer to retard the oxidation of Ti alloy during sintering process, for replacing the expensive and slightly toxic bonding agent. Bioceramic coatings prepared by electrolytic deposition, are used as bonding agents to solve the adhesion problems encountered currently. Among titanium alloys, Ti6Al7Nb without the poisoning effect of V ions has higher hardness, strength, wear resistance and fatigue limit compared with Ti6Al4V. According to the previous research, alumina and zirconia revealing high biocompatibility, are used as intermediate coatings in this study. All specimens annealed 4 cycles at 810°C for 4 min were characterized with XRD, FE-SEM, FIB and three point bending test. The result has shown that round porous separated TiO2 particles were formed on the surface of Ti alloy, leading to opaque layer peeling off. In contrast, the oxidations of Al2O3 and ZrO2 coated specimens were hindered effectively. After the further coatings of opaque, dentin and enamel on them, they revealed more oxidation resistance and better performance in adhesion strength. Especially, Al2O3 coated specimen is a little better than ZrO2 coated specimen due to the lower diffusion coefficient of O2 in the former, finally revealing the excellent bonding strength of 119.3 MPa, much greater than 36 MPa for commercial bonding agent (creation, Germany).
牙科材料扮演生醫材料中重要的一環,尤其是最普遍使用於人體的義齒(denture teeth),主要仍是由金屬基材與陶瓷塗層所製作而成可媲美真牙的一種複合製品。由於鈦的高生物相容性已被推廣應用於金屬-陶瓷復形體,但實際之應用仍有諸多問題待解,如鈦於燒製過程易氧化導致介面附著力弱化為一關鍵問題,一般而言使用牙科用接著劑能減緩氧化所造成的負面效應。本研究企圖以電解沉積之方式製備生醫陶瓷塗層,來嘗試以此做為燒結媒介,取代市面上昂貴且帶有些微毒性的接著劑,解決目前所遇到之附著力問題。鈦合金材料Ti6Al7Nb之硬度、強度、耐磨耗程度、耐疲勞度皆優於過去常用之Ti6Al4V,且無毒性離子(V)釋出之問題,因此將以此合金作為基材進行試驗。根據過去研究,電解沉積之生醫陶瓷能有效增加金屬之抗腐蝕能力,因此本研究即以電化學方法製備氧化鋁、氧化鋯後續堆瓷之結合層。各種製備完成的試片在810°C熱處理四次各維持五分鐘後,再經由XRD、FE-SEM、FIB分析觀察及三點彎曲測試。結果顯示,若無中間生醫陶瓷保護層,因Ti基材之過度氧化形成鬆散之TiO2顆粒而使不透明層整層剝離,在生醫陶瓷保護層之沉積後,鈦基材之氧化明顯減緩許多。若再經兩層不透明層,一層牙本質,一層琺瑯層之堆疊與退火,更能表現出較優之抗高溫氧化效果,而呈現較佳之附著力,其中Al2O3之表現又優於ZrO2乃因前者具較低之氧擴散係數,而使鈦合金底材氧化程度更輕微,呈現119.3MPa之最佳附著力,遠比目前商業使用接著劑(Creation,Germany)之36MPa高出甚多。
URI: http://hdl.handle.net/11455/92052
其他識別: U0005-2107201516343300
文章公開時間: 10000-01-01
Appears in Collections:材料科學與工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.