Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92055
標題: 不同生育地台灣海棗葉功能特性及生長之研究
Leaf traits and growth of the Taiwan palm Phoenix hanceana Naudin in different habitats
作者: Su-Ya Liao
廖思雅
關鍵字: 台灣海棗
環境因子
葉功能特性
季節變化
棕櫚樹齡
生長模式
Taiwan date palm
Phoenix hanceana Naudin
environmental factor
leaf functional trait
seasonal changes
palm age
growth model
引用: 朱德民、蔡秀隆。1992。浸水與玉米生長發育。中華農藝2:43-56。 江瑞拱。2001。溫度對水稻生產之影響。台東區農業專訊35:17-20。 呂福原、歐辰雄、陳運造、祈豫生、呂金誠、曾彥學。2010。台灣樹木圖誌 第三卷。國立中興大學農學院出版委員會。台中。 李婉靜。2010。台中大肚瑞井地區植物社會研究。靜宜大學生態學研究所碩士論文。 杜正勝。1998。番社采風圖題解─以臺灣歷史初期平埔族之社會文化為中心。中央研究院歷史語言研究所。台北。 林朝欽、邱祈榮、陳明義、蕭其文、曾仁鍵。2005。大肚山地區林火危險預測模式之推導。中華林學季刊38:83-94。 邱少婷。2010。台東地區冰河時期孑遺植物及其生育地保護行動方案(第2年∕全程3年)。行政院農業委員會林務局99年度科技計畫研究報告。 邱少婷。2011。台東地區冰河時期孑遺植物及其生育地保護行動方案(第3年∕全程3年)。行政院農業委員會林務局99年度科技計畫研究報告。 金平亮三。1936。台灣樹木誌。台灣總督府中央研究所林業部。台北。 夏禹九、王文賢。1985。坡地日輻射潛能的計算。台灣省林業試驗所試驗簡報第0001號。 章錦瑜、陳明義。1995。野火對中山高速公?沿線?帶之影響。中華?學季刊28:69-79。 陳子英。2000。林田山事業區第142林班海岸山脈植群監測。行政院農業委員會林務局保育研究系列第89-13號。 陳子英、魯丁慧。2008。綠島維管束植物調查計畫。內政部營建署委託辦理報告。 陳明義、呂金誠、劉思謙。1989。相思樹林火燒後植群演替之探討。台灣省林業試驗所主辦。 陳秋正。1997。天竺草族群生態之研究。國立中興大學植物系碩士?文。 程天立、林朝欽。1985。森林資源保育與自然保護區之設置。行政院農業委員會林務局。台北。 楊勝任。1994。關山台灣胡桃、台灣海棗保護區之植群生態研究。台灣省農林廳林務局保育研究系列第82-9號。 路統信。1979。椰子類全科彩色圖誌。中國花卉雜誌社。台北。 蔡志豪。2005。台中大肚山竹坑北坑樣帶四年內植群分布與環境因子相關性之研究。靜宜大學生態學研究所碩士論文。 蘇鴻傑。1987。森林生育地因子及其定量評估。中華林學季刊20:1-14。 蘇鴻傑。1988。雪山香柏保護區植群生態之研究。林務局保育研究系列。 Abrahamson, W. G. 2007. Leaf traits and leaf life spans of two xeric-adapted palmettos. American Journal of Botany 94: 1297-1308. Albert, C. H., W. Thuiller, N. G. Yoccoz, A. Soudant, F. Boucher, P. Saccone, and S. Lavorel. 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98: 604-613. Beccari, O. 1908. The palms of the Batanes and Babuyanes islands. The Philippine Journal of Science 3: 339. Binkley, D. B., J. L. Stape, and M. G. Ryan. 2004. Thinking about efficiency of resource use in forests. Forest Ecology and Management 193: 5-16. Blombery, A. M. and T. Rodd. 1981. Palms of the World. Angus and Robertson, Sydney. Bullock, S. H. 1980. Demography of an undergrowth palm in littoral Cameroon. Biotropica 12: 247-255. Cao, K. F. 2000. Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Canadian Journal of Botany 78: 1245-1253. Carvalho, R. M., F. R. Martins, and F. A. M. Santos. 1999. Leaf ecology of pre- reproductive ontogenetic stages of the Palm tree Euterpe edulis Mart. (Arecaceae). Annual of Botany 83: 225-233. Chazdon, R. L. 1985. Leaf display, canopy structure, and light interception of two understory palm species. American Journal of Botany 72: 1493-1502. Chazdon, R. L. 1991. Plant size and form in the understory palm genus Geonoma: are species variations on a theme? American Journal of Botany 78: 680-694. Coley, P. D. 1988. Effects of plant growth rate and leaf lifetime on the amount and 47 type of anti-herbivore defense. Oecologia 74: 531-536. Corner, E. J. H. 1966. The natural history of palms. Weidenfeld and Nicolson, London. Dale, J. E. 1982. The growth of leaves. Edward Arnold, London. De Steven, D., D. M. Windsor, F. E. Putz, and B. de Le?n. 1987. Vegetative and reproductive phenologies of a palm assemblage in Panama. Biotropica 19: 342-356. Edwards, P. J., J. Kollmann, and K. Fleischmann. 2003. Life history evolution in Lodoicea maldivica (Arecaceae). Nordic Journal of Botany 22: 227- 237. Esau, K. 1977. Anatomy of Seed Plants. John Wiley and Sons, New York. Fenner, M. 1998. The phenology of growth and reproduction in plants. Perspectives in Plant Ecology, Evolution and Systematics 1: 78-91. Francko, D. A. 2003. Palms won't grow here and other myths. Timber Press, Portland. Franzen, J. L., O. Fejfar, and G. Storch, V. Wilde. 2003. Eppelsheim 2000-New discoveries at a classic locality. Deinsea 10: 217-234. Gattia, M. G., P. I. Campanelloa, and G. Goldsteina. 2011. Growth and leaf production in the tropical palm Euterpe edulis: Light conditions versus developmental constraints. Flora 206: 742-748. Givnish, T. J. 1982. On the adaptive significance of leaf height in forest herbs. The American Naturalist 120: 353-381. Givnish, T. J. 1984. Leaf and canopy adaptations in tropical forests. Pages 51-84 in E. Medina, H. A. Mooney, C. Vazquez-Yanez, editors. Physiological Ecology of Plants of the Wet Tropics. Junk, Hague. Grubb, P. J., W. G. Lee, J. Kollmann, and J. B. Wilson. 1996. Interaction of irradiance and soil nutrient supply on growth of seedlings of ten European tall-shrub species and Fagus Sylvatica. Journal of Ecology: 84: 827-840. Harper, J. L. 1989a. The value of a leaf. Oecologia 80: 53-58. Harper, J. L. 1989b. Canopies as populations. In: Russell G., B. Marshall, P. G. Jarvis, eds. Plant canopies: their growth, form and function. Cambridge: Cambridge University Press, 105-128. Hodgson, J. G., G. Montserrat-Marti, M. Charles, G. Jones, P. Wilson, B. Shipley, M. Sharafi, B. E. L. Cerabolini, J. H. C. Cornelissen, S. R. Band, A. Bogard, P. Castro-Diez, J. Guerrero-Campo, C. Palmer, M. C. Perez-Rontome, G. Carter, A. Hynd, A. Romo-Diez, L. D. Espuny, and F. R. Pla. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany 108: 1337-1345. Jones, D. L. 1995. Palms throughout the World. Reed Books, Chatswood. Kahn, F. 1986. Life forms of Amazonian Palms in relation to forest structure and dynamics. Biotropica 18: 214-218. Kikuzawa, K. 1991. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. The American Naturalist 138: 1250-1263. Lambers, H. and H. Porter. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 188-261. Liao, J. C. 2000. Palmae (Areacaceae), p.655-662. In T. C. Huang, et al. (ed.), Flora of Taiwan, 2nd edition, Vol. 5. Editorial committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei. Lugo, A. E. and C. T. R. Batlle. 1987. Leaf production, growth rate, and age of the palm Prestoea montatna in the Luquillo Experimental Forest, Puerto Rico. Journal of Tropical Ecology 3: 151-161. McMahon, T. A. and R. E. Kronauer. 1976. Tree structures: deducing the principle of mechanical design. Journal of Theoretical Biology 59: 443-466. Meerow, A. W. 1994. Palm seed germination. University of Florida IFAS extension. Meerts, P. and E. Garnier. 1996. Variation in relative growth rate and its components in the annual Polygonum aviculare in relation to habitat disturbance and seed size. Oecologia 108: 438-445. Milla, R. and P. B. Reich. 2007. The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B-Biological Sciences 274: 2109-2114. Naidu, S. L. and E. H. DeLucia. 1997. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps. Tree Physiology 17: 367-376. Naudin, M. 1879. On a new chinese Caryota. Journal of Botany, British and Foreign 17: 174. Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996. Applied linear statistical models, 4th edn. McGraw-Hill, New York, USA. Niinemets, U., A. Portsmuth, and M. Tobias. 2006. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist 171: 91-104. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637-669. Reich, P. B., I. J. Wright, J. Cavender-Bares, J. M. Craine, J. Oleksyn, M. Westoby, and M. B. Walters. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164: 143-164. Renninger, H. J. and G. D. Salvucci. 2010a. Wet- vs. dry- season transpiration in an Amazonian rain forest palm Iriartea deltoidea. Biotropica 42: 470- 478. Renninger, H. J. and G. D. Salvucci. 2010b. Intrinsic and extrinsic hydraulic factors in varying sizes of two Amazonian palm species (Iriartea deltoidea and Mauritia flexuosa) differing in development and growing environment. American Journal of Botany 97: 1926- 1936. Resurreccion, A. P., T. Hara, B. O. Juliano, and S. Yoshida. 1977. Effect of temperature during ripening on grain quality of rice. Soil Science and Plant Nutrition 23: 109-112. Rich, P. M., N. M. Holbrook, and N. Luttunger. 1995. Leaf development and crown geometry of two Iriarteoid Palms. American Journal of Botany 82: 328-336. Rossi, S., A. Deslauriers, and H. Morin. 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21: 33- 39. Rossi, S., A. Deslauriers, T. Anfodillo, H. Morin, A. Saracino, R. Motta, and M. Borghetti. 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist 170: 301-310. Russell, M. J., A. J. Hall, and D. Turner. 1989. In vitro growth of iron sulphide chimneys: Possible culture chambers for origin- of- life experiments. Terra Nova 1: 238-241. Sack, L., P. J. Melcher, W. H. Liu, E. Middleton, and T. Pardee. 2006. How strong is intracanopy leaf plasticity in temperate deciduous trees? American Journal of Botany 93: 829-839. Sims, D. A., and R. W. Pearcy. 1994. Scaling sun and shade photosynthetic acclimation of Alocasia macrorrhiza to whole-plant performance- I. Carbon balance and allocation at different daily photon flux densities. Plant Cell Environment 17: 881-887. Souza, A. F., F. R. Martins, and L. C. Bernacci. 2003. Clonal growth and reproductive strategies of the understory tropical palm Geonoma brevispatha: an ontogenetic approach. Canadian Journal of Botany 81: 101-112. Su, H. J. 1987. Studies on the multivariate analysis in vegetation ecology III: detrended correspondence analysis and related ordination techniques. Quarterly Journal of Chinese Forestry 20: 45-68. Thomson, J. 1875. The Strait of Malacca, Indo-China and China. Sampson Low, Marston Low and Searle, London. Tomlinson, P. B. 1990. Structural biology of palms. Clarendon Press, Oxford. Tomlinson, P. B. 2006. The uniqueness of palms. Botanical Journal of the Linnean Society 151: 5-14. Turner, I. M. 1994. Scleriphylly- primarily protective. Functional Ecology 8: 669-675. Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116: 882-892. Voeks, R. A. 2002. Reproductive ecology of the piassava palm (Attalea funifera) of Bahia, Brazil. Journal of Tropical Ecology 18: 121-136. Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany 61: 199-223. Walther, G. R. 2004. Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics 6: 169-185. Wright, I. J., P. B. Reich, J. H. C. Cornelissen, D. S. Falster, P. K. Groom, K. Hikosaka, W. Lee, C. H. Lusk, ?. Niinemets, J. Oleksyn, N. Osada, H. Poorter, D. I. Warton, and M. Westoby. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411-421. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827. Wright, S. J. 1996. Phenological responses to seasonality in tropical forest plants. Pages 325-378 in S. S. Mulkey, R. L. Chazdon and A. P. Smith, editors. Tropical Forest Plant Ecophysiology. Chapman and Hall, New York. Wright, S. J. and C. P. Van Schaik. 1994. Light and the phenology of tropical trees. American Naturalist 143: 192-199.
摘要: Taiwan date palm, Phoenix hanceana Naudin (Arecaceae) is a native palm widely distributed in lowland Taiwan. Compared to most palm trees growing in tropical regions, P. hanceana found in subtropical habitats is a chilling tolerant indicator plant of its family. This species can serve as a valuable indicator to study the effects of global warming and changing environments and to provide a better understanding of how these changes affect the future populations of species in Arecacae and their growth strategies. In this study, P. hanceana from seven selected study sites in Taiwan (including western and eastern coastal areas and an outlying island), and cultivated individuals with different treatments, were used to monitor. The aim was to explore the association between growth strategy and leaf functional traits of P. hanceana and compare sapling growth responses. In addition, the tree age modeling and age estimation of local populations of P. hanceana were first reported. Results showed that the plants growing in eastern Taiwan (Nantian, Guanshan and Baxiandong) had slower leaf growth rates. Among these sites, the plants growing in Baxiandong with relative shaded environments and those in the 21st- 25th plots of Guanshan had higher values of mature leaf length, leaf petiole length, leaf life span, leaf area and specific leaf area (SLA), but smaller leaflet frequency. The plants growing at Tongxiao, Dadu, Ludao (island) and Dulan had higher leaf growth rates. The two western sites (Dadu and Tongxiao) had experienced long term disturbance from human activity and fire, and gave the highest leaf dry matter content and low specific leaf area. Stepwise regression predicted that annual mean temperature, cumulative days of temperature < 12℃ per year, annual max temperature and min temperature were the main factors significantly related to leaf traits. A similar result was found from Canonical Correspondence Analysis (CCA). The seven study sites can be classified as coming from three geographic regions: eastern coastal, Guanshan, and western coastal regions. Among the classified ranks of the plant trunk height, there were no significant differences between leaf traits and trunk heights in western coastal and in Guanshan regions, but the leaf growth rate and leaf area increased with trunk height of the plants growing in eastern coastal region and the 14-16th plots of Guanshan. No matter leaf growth rate or green leaf number of any nursery saplings increase as trunk height increases. Those plants cultivated in eastern Taiwan treated with [sunny + moist] had a higher growth rate and green leaf number; while the plants treated with [sunny + water logging] had the shorter leaf life span than the others. The seasonal growth surveys during 2011 to 2013 showed that the highest leaf growth rate appeared in the summer of 2012, while the slowest one was in the winter of 2012. In summer and in fall of 2012, leaf growth rate was faster than those of the previous year. This study revealed that P. hanceana has different growth strategies in response to different environments and seasonal changes, and these responses may affect the trunk height. Moreover, temperature is the most important factor for palm growth. Light shapes the leaf. Precipitation promotes leaf growth, and the rainy days affect the leaf growth strategies: to increase the leaf number or to elongate leaf length. However, if precipitation is excessive, and the trunk bases are soaked, gas exchange rates are reduced, thus reducing leaf longevity. Based on the growth modeling of P. hanceana constructed in this study, the young tree will not form a significant trunk until the growth of the 79th leaf. It is estimated that the ages of the existing populations of P. hanceana in Taiwan are at least 94- 273 years. Estimation of the oldest trunk age allows inference of the minimum local population survival time. In summary, these results of growth strategies and plant age composition of this species provide valuable insights for a better understanding of plant adaptive plasticity and for future conservation.
台灣海棗(Phoenix hanceana Naudin)為廣泛分布於台灣低海拔的原生棕櫚科(Arecaceae)植物。相對於一般的棕櫚科為熱帶植物,分布至亞熱帶地區的台灣海棗是本科植物可耐臨界低溫的指標物種,對於日趨嚴重的全球暖化及氣候劇烈動盪,值得探討其生長適應及族群延續策略。本研究以監測生長於台灣本島東西岸、離島等七個地區不同生育地的台灣海棗成株,並且加入人工種植的植株,探討其生長策略與葉功能特性的相關性。此外,本研究亦首次建構海棗樹齡的推算模式,並推估各地族群存活或形成的時間。 結果顯示生長在東部南田、關山及八仙洞地區的台灣海棗有顯著較緩慢的葉增加速率;其中較具遮陰的八仙洞及關山第21?25樣區,有顯著較大的成熟葉長度、葉柄長度、葉面積、比葉面積值及較小的小葉排列頻度。而生長在通霄、大肚、綠島及都蘭地區的台灣海棗具較快的葉增加速率,其中以長期受到干擾的西部大肚及通霄地區有較大的葉乾含量及較小的比葉面積。逐步回歸分析顯示年平均溫度、日平均溫度低於12℃的年累積天數百分比、年最高溫度及年最低溫度為主要影響葉特性的因子,與CCA第一軸有相似的結果。依結果大致可將調查的樣區劃分為三大地理區域:東部濱海、關山地區、西部濱海。而依植株高度區分的七個等級中,西部及關山地區均無任一葉特性在高度分級間有顯著差異,僅在東部及關山第14?16樣區之葉增加速率及葉面積隨著高度分級而增加。人工栽種的幼株也隨植株高度的增加,其葉增加速率及綠葉宿存數量均隨之增加。此外,在東部全日光、給水環境的人工處理組尤具明顯較快的葉增加速率及較多的綠葉宿存數量;然而在全光照、泡水組中的葉壽命明顯較其他處理組短。在二年(2011?2013年)葉特性的調查中,最快的葉增加速率出現於2012年夏季,而同年的冬季則最慢;葉增加速率及綠葉宿存數量在2012年夏季及秋季均較前一年大。推測季節變化可能和溫度及雨量豐沛與否有關,另外成熟葉長度及葉伸長速率均受到雨量因子的影響。以上得知台灣海棗植株在不同環境、桿高及季節變換均會採取不同的生長策略,溫度為重要影響生長的因子,光線改變葉片之形態塑形,雨量除促進生長外,降雨天數的多寡會影響增加葉數量或增長葉片長度而影響葉片的生長策略,但泡水導致換氣差而降減葉壽命。 經由生長觀測推算模式得知,台灣海棗約長出79片葉子才形成明顯的桿,並推估現存族群約有94?273年,由最大樹齡可推斷各族群在該地近期存活的時間。綜合了解此物種的生長策略及其樹齡結構,對台灣海棗族群的可塑性、未來動向和保育工作具有重要意義。
URI: http://hdl.handle.net/11455/92055
文章公開時間: 2017-08-31
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.