Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92059
標題: 臺灣欖仁溪森林動態樣區低地風衝常綠矮林之枯木碳存量與碳通量
Carbon stocks and fluxes in Lanjenchi Forest Dynamics Plot, a lowland windswept evergreen dwarf forest in Taiwan
作者: Yi-Sheng Chen
陳易昇
關鍵字: 枯木量
南仁山
碳吸存
碳匯
Carbon flux
Carbon sequestration
Nanjenshan
Necromass
引用: 任洪霞。2012。不同人為干擾方式對古田山亞熱帶森林木質殘體影響的研究。浙江師範大学研究所碩士論文。 祝燕、趙谷風、張儷文、沈國春、米湘成、任海保、于明堅、陳建華、陳聲文、方腾。2008。古田山中亞熱帶常綠闊葉林動態監測樣地——群落组成與结構。植物生態學報。32:262-273. 唐建维。2008。西雙版納熱帶季節雨林的粗死木質殘體及其養分元素。生態學雜誌。27: 2033-2041。 張家豪。2001。南仁山低地雨林凋落物分解及有效性養分之硏究。國立臺灣大學植物學研究所碩士論文。 陳佳雯。2012。南仁山溪谷樣區熱帶低地雨林枯木存量與動態。國立台灣大學生命科學院生態學與演化生物學研究所碩士論文。 聞恩榮、王西華、黃建軍。2005。森林粗死木質殘體的概念及其分類。生態學報。25:158-167。 謝長富、陳尊賢、孫義方、謝宗欣、鄭育斌、王國雄、蘇夢淮、江斐瑜。1992。墾丁國家公園亞熱帶雨林永久樣區之調查。墾丁國家公園管理處保育研究報告第85號。 Anthes, R. A., R. W. Corell, G. Holland, J. W. Hurrell, M. C. MacCracken, and K. E. Trenberth. 2006. Hurricanes and global warming-Potential linkages and consequences. Bulletin of the American Meteorological Society 87:623-628. Bellingham, P. J. and A. D. Sparrow. 2009. Multi‐stemmed trees in montane rain forests: their frequency and demography in relation to elevation, soil nutrients and disturbance. Journal of Ecology 97: 472-483. Braithwaite, N. T. and A. U. Mallik. 2012. Edge effects of wildfire and riparian buffers along boreal forest streams. Journal of Applied Ecology 49: 192-201. Brown, S. 1997. Estimating biomass and biomass change of tropical forests: a primer. Food and Agriculture Organization. Brown, S. and A. E. Lugo. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14: 161-187. Carmona, M. R., J. J. Armesto, J. C. Aravena, and C. A. Perez. 2002. Coarse woody debris biomass in successional and primary temperate forests in Chiloe Island, Chile. Forest Ecology and Management 164: 265-275. Chao, K. J., O. L. Phillips, and T. R. Baker. 2008. Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research 38:795-805. Chao, K. J., O. L. Phillips, A. Monteagudo, A. Torres‐Lezama, and R. Vásquez Martínez. 2009. How do trees die? Mode of death in northern Amazonia. Journal of Vegetation Science 20: 260-268. Chao, W.-C., K.-J. Chao, G.-Z. M. Song, and C.-F. Hsieh. 2007. Species composition and structure of the lowland subtropical rainforest at Lanjenchi, Southern Taiwan. Taiwania 52:253-269. Clark, D. B., D. A. Clark, S. Brown, S. F. Oberbauer, and E. Veldkamp. 2002. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management 164: 237-248. de Toledo, J. J., W. E. Magnusson, C. V. Castilho, and H. E. Nascimento. 2011. How much variation in tree mortality is predicted by soil and topography in Central Amazonia? Forest Ecology and Management 262:331-338. de Toledo, J. J., W. E. Magnusson, C. V. Castilho, and H. E. Nascimento. 2012. Tree mode of death in Central Amazonia: Effects of soil and topography on tree mortality associated with storm disturbances. Forest Ecology and Management 263:253-261. Delaney, M., S. Brown, A. E. Lugo, A. Torres‐Lezama, and N. B. Quintero. 1998. The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela1. Biotropica 30: 2-11. Ferry, B., F. Morneau, J. D. Bontemps, L. Blanc, and V. Freycon. 2010. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. Journal of Ecology 98: 106-116. Grove, S. J. 2001. Extent and composition of dead wood in Australian lowland tropical rainforest with different management histories. Forest Ecology and Management 154: 35-53. Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. Gregory, J. Lattin, N. Anderson, S. Cline, N. Aumen, and J. Sedell. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133-302. Harmon, M. E. and J. Sexton. 1996. Guidelines for measurements of woody detritus in forest ecosystems. US LTER Network Office Seattle (WA). Harmon, M. E., D. F. Whigham, J. Sexton, and I. Olmsted. 1995. Decomposition and mass of woody detritus in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico. Biotropica 27: 305-316. Harmon, M. E., O. N. Krankina, and J. Sexton. 2000. Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Canadian Journal of Forest Research 30:76-84. Keith, H., B. G. Mackey, and D. B. Lindenmayer. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proceedings of the National Academy of Sciences 106: 11635-11640. Kirschbaum, M. U. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27: 753-760. Krauss, K. W., T. W. Doyle, R. R. Twilley, T. J. Smith, K. R. Whelan, and J. K. Sullivan. 2005. Woody debris in the mangrove forests of south Floridal. Biotropica 37: 9-15. Lin, K. C., F. C. Ma, and S. L. Tang. 2001. Allometric equations for predicting the aboveground biomass of tree species in the Fushan forest. Taiwan Journal of Forest Science 16:143-151. Lin, T. C., S. P. Hamburg, K. C. Lin, L. J. Wang, C. T. Chang, Y. J. Hsia, M. A. Vadeboncoeur, C. M. M. McMullen, and C. P. Liu. 2011. Typhoon disturbance and forest dynamics: lessons from a Northwest Pacific subtropical forest. Ecosystems 14: 127-143. Lipan, Y., L. Wenyao, and M. Wenzhang. 2008. Woody debris stocks in different secondary and primary forests in the subtropical Ailao Mountains, Southwest China. Ecological Research 23: 805-812. Madelaine, C., R. Pelissier, G. Vincent, J. Molino, D. Sabatier, M. Prevost, and C. De Namur. 2007. Mortality and recruitment in a lowland tropical rain forest of French Guiana: effects of soil type and species guild. Journal of Tropical Ecology 23: 277-287. Martins, D. L., J. Schietti, T. R. Feldpausch, F. J. Luizao, O. L. Phillips, A. Andrade, C. V. Castilho, S. G. Laurance, A. Oliveira, and I. L. Amaral. 2014. Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia. Plant Ecology and Diversity 7: 1-13. Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465-472. Morrison, M. L. and M. G. Raphael. 1993. Modeling the dynamics of snags. Ecological applications 3: 322-330. Nelson, B. W., V. Kapos, J. B. Adams, W. J. Oliveira, and O. P. Braun. 1994. Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology 75: 853-858. Nieder, R. and D. K. Benbi. 2008. Carbon and nitrogen in the terrestrial environment. Springer. Palace, M., M. Keller, and H. Silva. 2008. Necromass production: studies in undisturbed and logged Amazon forests. Ecological applications 18:873-884. Palace, M., M. Keller, G. P. Asner, J. N. M. Silva, and C. Passos. 2007. Necromass in undisturbed and logged forests in the Brazilian Amazon. Forest Ecology and Management 238: 309-318. Pedlar, J. H., J. L. Pearce, L. A. Venier, and D. W. McKenney. 2002. Coarse woody debris in relation to disturbance and forest type in boreal Canada. Forest Ecology and Management 158: 189-194. Pielke Jr, R. A. and D. Sarewitz. 2005. Bringing society back into the climate debate. Population and Environment 26:255-268. Richardson, S. J., D. A. Peltzer, J. M. Hurst, R. B. Allen, P. J. Bellingham, F. E. Carswell, P. W. Clinton, A. D. Griffiths, S. K. Wiser, and E. F. Wright. 2009. Deadwood in New Zealand's indigenous forests. Forest Ecology and Management 258: 2456-2466. Robert, A. 2003. Simulation of the effect of topography and tree falls on stand dynamics and stand structure of tropical forests. Ecological Modelling 167: 287-303. Saner, P., Y. Y. Loh, R. C. Ong, and A. Hector. 2012. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLOS one 7: e29642. Scatena, F. and A. E. Lugo. 1995. Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico. Geomorphology 13: 199-213. Schlegel, B. C. and P. J. Donoso. 2008. Effects of forest type and stand structure on coarse woody debris in old-growth rainforests in the Valdivian Andes, south-central Chile. Forest Ecology and Management 255: 1906-1914. Stewart, G. H. and L. E. Burrows. 1994. Coarse woody debris in old-growth temperate beech (Nothofagus) forests of New Zealand. Canadian Journal of Forest Research 24: 1989-1996. Van Wagner, C. 1968. The line intersect method in forest fuel sampling. Forest Science 14: 20-26. Walter, S. T. and C. C. Maguire. 2005. Snags, cavity-nesting birds, and silvicultural treatments in Western Oregon. Journal of Wildlife Management 69: 1578-1591. Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844-1846. Williamson, G. B., W. F. Laurance, A. A. Oliveira, P. Delamonica, C. Gascon, T. E. Lovejoy, and L. Pohl. 2000. Amazonian tree mortality during the 1997 El Nino drought. Conservation Biology 14:1538-1542. Yoneda, T., R. Tamin, and K. Ogino. 1990. Dynamics of aboveground big woody organs in a foothill dipterocarp forest, West Sumatra, Indonesia. Ecological Research 5:111-130. Young, T. P. and V. Perkocha. 1994. Treefalls, crown asymmetry, and buttresses. Journal of Ecology 82: 319-324.
摘要: 碳循環在溫室效應及環境變遷中扮演一個重要的角色,而隨著環境問題日益嚴重,碳循環受到科學家所重視。在陸域生態系的碳循環中,森林生態系更是關鍵的一環,但在過去的研究中,多著重於活樹的部分,鮮少論及枯木。已有前人研究指出枯木佔地面生物量的6%-25%,顯示出其在碳通量計算上為不可或缺的一部分。枯木量的研究多在南美亞馬遜地區,相對在亞洲區的研究較少。臺灣為位於亞洲太平洋西部颱風的主要路徑上,受侵襲頻率高,非常適合研究森林在高頻率強烈干擾下碳平衡的狀態。 因此,本研究選定臺灣南部的南仁山地區欖仁溪森林動態樣區,做為研究地點。本研究藉由自2012年1月至2014年4月止對該地區枯木輸入量、枯木存量和枯木分解速率的研究,並配合該地區長期森林動態樣區研究資料,探討森林枯木量及碳存量的動態。研究結果顯示欖仁溪樣區森林枯木存量為9.03-10.09 Mg ha-1,有隨時間增加的趨勢。而枯木輸入量在颱風季過後的10月有最高的峰值,並且顯著高於4月及7月。東北季風盛行的1月,其枯木輸入量雖較春夏季高,但是並不顯著。本研究認為迎風區枯木由於徑級較小且較適應風力干擾,故該地區枯木存量及輸入量較背風區低。將枯木分為枯立木及枯倒木討論,可發現枯立木的死亡較不具季節性,而枯倒木則較易隨颱風侵襲或東北季風季而大量增加。粗枯木(直徑 ≥ 10 cm)和細枯木(直徑 ≥ 1 cm and < 10 cm)平均分解速率常數分別為0.50 yr-1和0.65 yr-1。相較於其他熱帶地區森林本地區枯木分解速度較高,此結果可能與前人研究提出本地區木材較不住抗腐性有關。經由研究我們得到枯木之年平均輸入量為5.13 Mg ha-1 yr -1,平均每年輸出量為3.85 Mg ha-1 yr -1,可得知欖仁溪樣區森林枯木存量正持續增加。而換算成碳量則為平均每年輸入量為1.91 Mg C ha-1 yr -1,平均每年輸出量為1.39 Mg C ha-1 yr -1 。結合森林動態樣區的活樹資料(2008-2013),可得知此森林活樹量及枯木量皆呈現碳匯(輸入大於輸出)的狀態,顯示欖仁溪動態樣區森林仍持續吸收並儲存大氣中的碳。綜上所述,在颱風干擾頻繁的森林其枯木存量會較低,可能是由於樹木已適應風力干擾。但是本地區森林對碳吸存有正面的貢獻而為碳匯。
URI: http://hdl.handle.net/11455/92059
文章公開時間: 2016-02-04
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.