Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92100
標題: 以蛋白質交互作用分析阿拉伯芥之Rab8A蛋白質及其參與之農桿菌感染過程
A protein interaction study of the Arabidopsis Rab8A protein and its involvement of Agrobacterium infection process
作者: Yin-Tzu Liu
劉茵慈
關鍵字: 農桿菌
Rab8A蛋白質
Agrobacterium
Rab8A
引用: 1. 吳恩婷。(2013)。數種野生農桿菌之分析及應用開發。國立中興大學生命科學所 碩士論文 2. 張欣農。(2012)。Small GTPase AtRab8蛋白質家族及可與其結合之AtRTNLB蛋白質於農桿菌感染過程之功能分析。國立中興大學生命科學所 碩士論文 3. 傅碧汝。(2010)。阿拉伯芥AtRTNLB1至AtRTNLB7基因家族於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文 4. 黃凡真。(2011)。以蛋白質交互作用分析在農桿菌感染過程中AtRTNLB1-8與AtRab8B之功能。國立中興大學生命科學所 碩士論文 5. 盧毓。(2010)。阿拉伯芥AtRab8蛋白質家族於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文 6. Bassham, D.C., Brandizzi, F., Otegui, M.S., and Sanderfoot, A.A. (2008). The secretory system of Arabidopsis. Arabidopsis book , K. Torii, C. Chang, G. Coaker, L. Comai, G. Jander, D. Kliebenstein, R. Last, R. Lister, R. McClung, H. Millar, L. Shan, D. Wagner eds (Rockville, USA: American Society of Plant Biologists). 7. Aguilar, J., Cameron, T.A., Zupan, J., and Zambryski, P. (2011). Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. Microbiology 2, e00218-00211. 8. Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proceedings of the national academy of sciences of the united states of america 81, 5994-5998. 9. Aly, K.A., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766-3775. 10. Ananiadou, S., Sullivan, D., Black, W., Levow, G.A., Gillespie, J.J., Mao, C., Pyysalo, S., Kolluru, B., Tsujii, J., and Sobral, B. (2011). Named entity recognition for bacterial Type IV secretion systems. PloS one 6, e14780. 11. Bailey, S., Ward, D., Middleton, R., Grossmann, J.G., and Zambryski, P.C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proceedings of the national academy of sciences of the united states of america 103, 2582-2587. 12. Ballas, N., and Citovsky, V. (1997). Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proceedings of the national academy of sciences of the united states of america 94, 10723-10728. 13. Baron, C., Llosa, M., Zhou, S., and Zambryski, P.C. (1997). VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. Journal of bacteriology 179, 1203-1210. 14. Bhattacharjee, S., Lee, L.Y., Oltmanns, H., Cao, H., Veena, Cuperus, J., and Gelvin, S.B. (2008). IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant cell 20, 2661-2680. 15. Bock, J.B., Matern, H.T., Peden, A.A., and Scheller, R.H. (2001). A genomic perspective on membrane compartment organization. Nature 409, 839-841. 16. Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual review of plant biology 60, 379-406. 17. Bolton, G.W., Nester, E.W., and Gordon, M.P. (1986). Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232, 983-985. 18. Bourne, H.R., Sanders, D.A., and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127. 19. Bucci, C., Parton, R.G., Mather, I.H., Stunnenberg, H., Simons, K., Hoflack, B., and Zerial, M. (1992). The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715-728. 20. Burns, M.E., Sasaki, T., Takai, Y., and Augustine, G.J. (1998). Rabphilin-3A: a multifunctional regulator of synaptic vesicle traffic. Journal of general physiology 111, 243-255. 21. Cangelosi, G.A., Ankenbauer, R.G., and Nester, E.W. (1990). Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proceedings of the national academy of sciences of the united states of america 87, 6708-6712. 22. Cangelosi, G.A., Martinetti, G., Leigh, J.A., Lee, C.C., Thienes, C., and Nester, E.W. (1989). Role for Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. Journal of bacteriology 171, 1609-1615. 23. Caplan, A.B., Van Montagu, M., and Schell, J. (1985). Genetic analysis of integration mediated by single T-DNA borders. Journal of bacteriology 161, 655-664. 24. Carter, C.J., Bednarek, S.Y., and Raikhel, N.V. (2004). Membrane trafficking in plants: new discoveries and approaches. Current opinion in plant biology 7, 701-707. 25. Cascales, E., and Christie, P.J. (2004). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proceedings of the national academy of sciences of the united states of america 101, 17228-17233. 26. Chandran, V. (2013). Type IV secretion machinery: molecular architecture and function. Biochemical society transactions 41, 17-28. 27. Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., and Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant physiology 115, 971-980. 28. Cherfils, J., and Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiological reviews 93, 269-309. 29. Cheung, A.Y., Chen, C.Y., Glaven, R.H., de Graaf, B.H., Vidali, L., Hepler, P.K., and Wu, H.M. (2002). Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant cell 14, 945-962. 30. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500. 31. Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annual review of microbiology 59, 451-485. 32. Christie, P.J., Ward, J.E., Winans, S.C., and Nester, E.W. (1988). The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. Journal of bacteriology 170, 2659-2667. 33. Citovsky, V., Kozlovsky, S.V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., and Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cellular microbiology 9, 9-20. 34. Citovsky, V., Wong, M.L., and Zambryski, P. (1989). Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proceedings of the national academy of sciences of the united states of america 86, 1193-1197. 35. Coll, N.S., Epple, P., and Dangl, J.L. (2011). Programmed cell death in the plant immune system. Cell death and differentiation 18, 1247-1256. 36. Dijkstra, A.J., and Keck, W. (1996). Peptidoglycan as a barrier to transenvelope transport. Journal of bacteriology 178, 5555-5562. 37. Dodds, P.N., and Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nature reviews genetics 11, 539-548. 38. Durrenberger, F., Crameri, A., Hohn, B., and Koukolikova-Nicola, Z. (1989). Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proceedings of the national academy of sciences of the united states of america 86, 9154-9158. 39. Eisenbrandt, R., Kalkum, M., Lai, E.M., Lurz, R., Kado, C.I., and Lanka, E. (1999). Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. Journal of biological chemistry 274, 22548-22555. 40. Feng, Y., Press, B., and Wandinger-Ness, A. (1995). Rab 7: an important regulator of late endocytic membrane traffic. Journal of cell biology 131, 1435-1452. 41. Fernandez, D., Dang, T.A., Spudich, G.M., Zhou, X.R., Berger, B.R., and Christie, P.J. (1996). The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. Journal of bacteriology 178, 3156-3167. 42. Filichkin, S.A., and Gelvin, S.B. (1993). Formation of a putative relaxation intermediate during T-DNA processing directed by the Agrobacterium tumefaciens VirD1, D2 endonuclease. Molecular microbiology 8, 915-926. 43. Finberg, K.E., Muth, T.R., Young, S.P., Maken, J.B., Heitritter, S.M., Binns, A.N., and Banta, L.M. (1995). Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations. Journal of bacteriology 177, 4881-4889. 44. Gamborg, O.L., Miller, R.A., and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental cell research 50, 151-158. 45. Gelvin, S.B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual review of plant physiology and plant molecular biology 51, 223-256. 46. Gelvin, S.B. (2006). Agrobacterium virulence gene induction. Methods in molecular biology 343, 77-84. 47. Gelvin, S.B. (2010). Plant proteins involved in Agrobacterium-mediated genetic transformation. Annual review of phytopathology 48, 45-68. 48. Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 425, 737-741. 49. Gohlke, J., and Deeken, R. (2014). Plant responses to Agrobacterium tumefaciens and crown gall development. Frontiers in plant science 5, 155. 50. Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular cell 5, 1003-1011. 51. Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant journal 18, 277-284. 52. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C., and Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323-2328. 53. Goody, R.S., Rak, A., and Alexandrov, K. (2005). The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cellular and molecular life sciences 62, 1657-1670. 54. Hapfelmeier, S., Domke, N., Zambryski, P.C., and Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. Journal of bacteriology 182, 4505-4511. 55. Heese, M., Gansel, X., Sticher, L., Wick, P., Grebe, M., Granier, F., and Jurgens, G. (2001). Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. Journal of cell biology 155, 239-249. 56. Heindl, J.E., Wang, Y., Heckel, B.C., Mohari, B., Feirer, N., and Fuqua, C. (2014). Mechanisms and regulation of surface interactions and biofilm formation in. Frontiers in plant science 5, 176. 57. Hepburn, A.G., White, J., Pearson, L., Maunders, M.J., Clarke, L.E., Prescott, A.G., and Blundy, K.S. (1985). The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. Journal of general microbiology 131, 2961-2969. 58. Howard, E.A., Winsor, B.A., De Vos, G., and Zambryski, P. (1989). Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: Tight association of VirD2 with the 5' ends of T-strands. Proceedings of the national academy of sciences of the united states of america 86, 4017-4021. 59. Howard, E.A., Zupan, J.R., Citovsky, V., and Zambryski, P.C. (1992). The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68, 109-118. 60. Hwang, H.H., and Gelvin, S.B. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant cell 16, 3148-3167. 61. Hwang, H.H., Wang, M.H., Lee, Y.L., Tsai, Y.L., Li, Y.H., Yang, F.J., Liao, Y.C., Lin, S.K., and Lai, E.M. (2010). Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation. Molecular plant pathology 11, 677-690. 62. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature biotechnology 14, 745-750. 63. Iwahashi, J., Kawasaki, I., Kohara, Y., Gengyo-Ando, K., Mitani, S., Ohshima, Y., Hamada, N., Hara, K., Kashiwagi, T., and Toyoda, T. (2002). Caenorhabditis elegans reticulon interacts with RME-1 during embryogenesis. Biochemical and biophysical research communications 293, 698-704. 64. Jakubowski, S.J., Kerr, J.E., Garza, I., Krishnamoorthy, V., Bayliss, R., Waksman, G., and Christie, P.J. (2009). Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Molecular microbiology 71, 779-794. 65. Jakubowski, S.J., Krishnamoorthy, V., Cascales, E., and Christie, P.J. (2004). Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. Journal of molecular biology 341, 961-977. 66. Jin, S., Roitsch, T., Ankenbauer, R.G., Gordon, M.P., and Nester, E.W. (1990a). The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. Journal of bacteriology 172, 525-530. 67. Jin, S.G., Roitsch, T., Christie, P.J., and Nester, E.W. (1990b). The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. Journal of bacteriology 172, 531-537. 68. Johansen, J.N., Chow, C.M., Moore, I., and Hawes, C. (2009). AtRAB-H1b and AtRAB-H1c GTPases, homologues of the yeast Ypt6, target reporter proteins to the Golgi when expressed in Nicotiana tabacum and Arabidopsis thaliana. Journal of experimental botany 60, 3179-3193. 69. Jones, A.L., Shirasu, K., and Kado, C.I. (1994). The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. Journal of bacteriology 176, 5255-5261. 70. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. 71. Kelly, B.A., and Kado, C.I. (2002). Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Molecular plant pathology 3, 125-134. 72. Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C., Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E., and Gordon, M. (1984). Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proceedings of the national academy of sciences of the united states of america 81, 1728-1732. 73. Koonin, E.V., and Rudd, K.E. (1994). A conserved domain in putative bacterial and bacteriophage transglycosylases. Trends in biochemical sciences 19, 106-107. 74. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proceedings of the national academy of sciences of the united states of america 98, 1871-1876. 75. Kwon, S.I., Cho, H.J., Kim, S.R., and Park, O.K. (2013). The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant physiology 161, 1722-1736. 76. Lacroix, B., and Citovsky, V. (2013). The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. International journal of developmental biology 57, 467-481. 113. Pitzschke, A., Djamei, A., Teige, M., and Hirt, H. (2009). VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proceedings of the national academy of sciences of the united states of america 106, 18414-18419. 114. Puvanesarajah, V., Schell, F.M., Stacey, G., Douglas, C.J., and Nester, E.W. (1985). Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. Journal of bacteriology 164, 102-106. 115. Reuhs, B.L., Kim, J.S., and Matthysse, A.G. (1997). Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. Journal of bacteriology 179, 5372-5379. 116. Rutherford, S., and Moore, I. (2002). The Arabidopsis Rab GTPase family: another enigma variation. Current opinion in plant biology 5, 518-528. 117. Salminen, A., and Novick, P.J. (1987). A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49, 527-538. 118. Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuink, T.J., Crosby, W.L., and Hooykaas, P.J. (2001). Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Current biology 11, 258-262. 119. Shibata, Y., Hu, J., Kozlov, M.M., and Rapoport, T.A. (2009). Mechanisms shaping the membranes of cellular organelles. Annual review of cell and developmental biology 25, 329-354. 120. Smith, E.F., and Townsend, C.O. (1907). A plant-tumor of bacterial origin. Science 25, 671-673. 121. Sparkes, I., Tolley, N., Aller, I., Svozil, J., Osterrieder, A., Botchway, S., Mueller, C., Frigerio, L., and Hawes, C. (2010). Five Arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. The plant cell 22, 1333-1343. 122. Speth, E.B., Imboden, L., Hauck, P., and He, S.Y. (2009). Subcellular localization and functional analysis of the Arabidopsis GTPase RabE. Plant physiology 149, 1824-1837. 123. Spudich, G.M., Fernandez, D., Zhou, X.R., and Christie, P.J. (1996). Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proceedings of the national academy of sciences of the united states of america 93, 7512-7517. 124. Steck, T.R., Morel, P., and Kado, C.I. (1988). Vir box sequences in Agrobacterium tumefaciens pTiC58 and A6. Nucleic acids research 16, 8736. 125. Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature reviews molecular cell biology 10, 513-525. 126. Stenmark, H., and Olkkonen, V.M. (2001). The Rab GTPase family. Genome biology 2, 3007.1-3007.7 127. Storrie, B., Pepperkok, R., and Nilsson, T. (2000). Breaking the COPI monopoly on Golgi recycling. Trends in cell biology 10, 385-391. 128. Studier, F.W. (1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of molecular biology 219, 37-44. 129. Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiological reviews 81, 153-208. 130. Tenea, G.N., Spantzel, J., Lee, L.Y., Zhu, Y., Lin, K., Johnson, S.J., and Gelvin, S.B. (2009). Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants. Plant cell 21, 3350-3367. 131. Tolley, N., Sparkes, I.A., Hunter, P.R., Craddock, C.P., Nuttall, J., Roberts, L.M., Hawes, C., Pedrazzini, E., and Frigerio, L. (2008). Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport. Traffic 9, 94-102. 132. Toro, N., Datta, A., Carmi, O.A., Young, C., Prusti, R.K., and Nester, E.W. (1989). The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. Journal of bacteriology 171, 6845-6849. 133. Toro, N., Datta, A., Yanofsky, M., and Nester, E. (1988). Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proceedings of the national academy of sciences of the united states of america 85, 8558-8562. 134. Trokter, M., Felisberto-Rodrigues, C., Christie, P.J., and Waksman, G. (2014). Recent advances in the structural and molecular biology of type IV secretion systems. Current opinion in structural biology 27C, 16-23. 135. Tsai, Y.L., Chiang, Y.R., Narberhaus, F., Baron, C., and Lai, E.M. (2010). The small heat-shock protein HspL is a VirB8 chaperone promoting type IV secretion-mediated DNA transfer. Journal of biological chemistry 285, 19757-19766. 136. Tsai, Y.L., Chiang, Y.R., Wu, C.F., Narberhaus, F., and Lai, E.M. (2012). One out of four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone. PloS one 7, e49685. 137. Tzfira, T., Li, J., Lacroix, B., and Citovsky, V. (2004). Agrobacterium T-DNA integration: molecules and models. Trends in genetics 20, 375-383. 138. Tzfira, T., Vaidya, M., and Citovsky, V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. European molecular biology organization journal 20, 3596-3607. 139. Tzfira, T., Vaidya, M., and Citovsky, V. (2004). Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431, 87-92. 140. Valvekens, D., Montagu, M.V., and Van Lijsebettens, M. (1988). Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the national academy of sciences of the united states of america 85, 5536-5540. 141. van de Velde, H.J., Roebroek, A.J., Senden, N.H., Ramaekers, F.C., and Van de Ven, W.J. (1994). NSP-encoded reticulons, neuroendocrine proteins of a novel gene family associated with membranes of the endoplasmic reticulum. Journal of cell science 107, 2403-2416. 142. Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E. (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant physiology 131, 1191-1208. 143. Vincent, M.J., Martin, A.S., and Compans, R.W. (1998). Function of the KKXX motif in endoplasmic reticulum retrieval of a transmembrane protein depends on the length and structure of the cytoplasmic domain. Journal of biological chemistry 273, 950-956. 144. Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M., and Rapoport, T.A. (2006). A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573-586. 145. Wagner, M., Adamczak, R., Porollo, A., and Meller, J. (2005). Linear regression models for solvent accessibility prediction in proteins. Journal of computational biology : a journal of computational molecular cell biology 12, 355-369. 146. Wakana, Y., Koyama, S., Nakajima, K., Hatsuzawa, K., Nagahama, M., Tani, K., Hauri, H.P., Melancon, P., and Tagaya, M. (2005). Reticulon 3 is involved in membrane trafficking between the endoplasmic reticulum and Golgi. Biochemical and biophysical research communications 334, 1198-1205. 147. Waksman, G., and Fronzes, R. (2010). Molecular architecture of bacterial type IV secretion systems. Trends in biochemical sciences 35, 691-698. 148. Walworth, N.C., Goud, B., Kabcenell, A.K., and Novick, P.J. (1989). Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. European molecular biology organization journal 8, 1685-1693. 149. Wang, K., Stachel, S.E., Timmerman, B., M, V.A.N.M., and Zambryski, P.C. (1987). Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235, 587-591. 150. Wick, P., Gansel, X., Oulevey, C., Page, V., Studer, I., Durst, M., and Sticher, L. (2003). The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation. Plant physiology 132, 343-351. 151. Wickerham, L.J. (1946). A critical evaluation of the nitrogen assimilation tests as commonly used in the classification of the yeasts. Journal of bacteriology 51, 567. 152. Winans, S.C. (1990). Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. Journal of bacteriology 172, 2433-2438. 153. Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, Y., Chen, L., Wood, G.E., Almeida, N.F., Jr., Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A., Karp, P.D., Bovee, D., Sr., Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M.J., McClelland, E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S., Hendrick, C., Zhao, Z.Y., Dolan, M., Chumley, F., Tingey, S.V., Tomb, J.F., Gordon, M.P., Olson, M.V., and Nester, E.W. (2001). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317-2323. 154. Wu, Y.W., Tan, K.T., Waldmann, H., Goody, R.S., and Alexandrov, K. (2007). Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proceedings of the national academy of sciences of the united states of america 104, 12294-12299. 155. Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W., Li, Y., Tang, X., Zhu, L., Chai, J., and Zhou, J.M. (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Current biology 18, 74-80. 156. Yan, R., Shi, Q., Hu, X., and Zhou, X. (2006). Reticulon proteins: emerging players in neurodegenerative diseases. Cellular and molecular life sciences 63, 877-889. 157. Yen, S.K., Chung, M.C., Chen, P.C., and Yen, H.E. (2001). Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant. Plant physiology 127, 517-528. 158. Young, C., and Nester, E.W. (1988). Association of the virD2 protein with the 5' end of T strands in Agrobacterium tumefaciens. Journal of bacteriology 170, 3367-3374. 159. Yuan, Q., Carle, A., Gao, C., Sivanesan, D., Aly, K.A., Hoppner, C., Krall, L., Domke, N., and Baron, C. (2005). Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. Journal of biological chemistry 280, 26349-26359. 160. Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nature reviews molecular cell biology 2, 107-117. 161. Zupan, J., Hackworth, C.A., Aguilar, J., Ward, D., and Zambryski, P. (2007). VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. Journal of bacteriology 189, 6551-6563.
摘要: The Rab (Ras-like proteins in brain) protein, one of the small GTPase families, is common in eukaryotes and is primarily responsible for the endomembrane trafficking in plants. The Rab proteins include RabA-H subfamilies. The AtRabE (Rab8) subfamily is mainly involved in the post-Golgi transport to the plasma membrane in plant cells. Based on the previous studies, the AtRab8A, AtRab8B and AtRab8D' interacted with the Agrobacterium tumefaciens VirB2 (virulence) protein and Arabidopsis proteins AtRTNLB1, AtRTNLB2 and AtRTNLB4 in yeast two-hybrid assays. The RTNLB (reticulon-like B class) protein is located in the endoplasmic reticulum, and mediate tubular structure formations in plant cells. In this study, the glutathione S-transferase (GST) pull-down assays were used to detect interactions between AtRab and AtRTNLB proteins in vitro. The GST pull-down assay results showed that AtRab8A and AtRab8D' proteins interacted not only with A. tumefaciens virulence proteins VirB2, but also interacted with Arabidopsis proteins AtRTNLB1-4 and AtRTNLB8. In order to determine interaction strengths between AtRab8A, AtRab8B, AtRab8D' and AtRTNLB1-4, AtRTNLB8 proteins, the β-galactosidase enzyme activity assay in the yeast two-hybrid system were utilized. The yeast two-hybrid assay results showed that β-galactosidase enzyme activities were highest with VirB2 and AtRTNLB4. Among the tested yeast two-hybrid interactions between AtRab8A-8E and five AtRTNLB, AtRTNLB1-4, AtRTNLB8 proteins, the AtRTNLB4 with either the AtRab8A, AtRab8B, or AtRab8D' showed highest the β-galactosidase enzyme activity. Among the tested yeast two-hybrid interactions between different AtRTNLB proteins, the AtRTNLB2 with either the AtRTNLB2, AtRTNLB3, or AtRTNLB4 showed the highest β-galactosidase enzyme activity. To understand how the AtRab8A protein involved in A. tumefaciens infection process, the over-expression of AtRab8A or T7-tagged-AtRab8A transgenic plants were obtained and characterized. The transient transformation efficiencies and tumorigenesis efficiencies were higher in the AtRab8A over-expression transgenic plants than in the wild-type (Wassilewskija), suggesting that the AtRab8A protein may participate the A. tumefaciens infection process. Based on the results shown in this study and in previous studies, the AtRab8A protein may interact with VirB2, AtRTNLB1-4, and AtRTNLB8 proteins, and therefore participate A. tumefaciens infection process in plants.
Rab (Ras-like proteins in brain)為small GTPase的家族成員之一,普遍存在於真核生物中,在植物的Rab蛋白質主要負責細胞內的內膜運輸, 且可以再細分成A-H次家族,其中AtRabE (Rab8)次家族在植物細胞中主要可參與高基氏體到細胞膜之間物質的運送。且利用酵母菌雙雜合系統已發現AtRab8A、AtRab8B和AtRab8D'可與農桿菌致病蛋白質VirB2及植物蛋白質AtRTNLB1、AtRTNLB2和AtRTNLB4結合。而RTNLB為植物細胞內的reticulon-like 蛋白質,位於內質網上且幫助內質網管狀膜構造的形成。因此,本研究再進一步利用榖胱甘?硫轉移?蛋白質沉澱實驗(glutathione S-transferase [GST] pull-down assay)的方式檢測,在in vitro環境下AtRab和AtRTNLB蛋白質之間的交互作用,結果得知AtRab8A和AtRab8D'可與農桿菌中VirB2致病蛋白質結合,也可與植物蛋白質AtRTNLB1至4和AtRTNLB8結合。為了進一步瞭解AtRab8A、AtRab8B、AtRab8D'和VirB2及AtRTNLB1至4、AtRTNLB8蛋白質之間的結合力的差異,將上述有相互結合的蛋白質,利用酵母菌雙雜合系統並以β半乳醣甘?(β-galactosidase)酵素活性分析二測試蛋白質之間的結合能力。AtRab8A、AtRab8B、AtRab8D'蛋白質與VirB2的結合能力無顯著差異;而AtRTNLB蛋白質中,則以AtRTNLB4蛋白質與VirB2的結合能力最強。若檢測AtRab8和5種AtRTNLB之間的結合能力,可發現AtRab8A、AtRab8B、AtRab8D'與AtRTNLB4蛋白質的結合能力最強。而觀察五種AtRTNLB蛋白質兩兩之間的結合能力,可發現到AtRTNLB2、AtRTNLB3、AtRTNLB4與AtRTNLB2蛋白質的結合能力最強。此外,為了進一步瞭解AtRab8A蛋白質與VirB2和AtRTNLB蛋白質結合後,在植物中所扮演之功能。本研究建構了大量表現AtRab8A蛋白質的轉殖株和大量表現T7-tagged-AtRab8A重組蛋白質的轉殖株,來瞭解當轉殖株中大量表現AtRab8A蛋白質時,是否會影響轉殖株被農桿菌感染的效率。實驗結果顯示當大量表現AtRab8A蛋白質或T7-tagged-AtRab8A重組蛋白質時,其轉殖株被農桿菌感染後,短暫表現T-DNA的能力及腫瘤產生的效率都比野生株(Wassilewskija,Ws)高,可推測AtRab8A蛋白質可能參與農桿菌感染植物的過程。綜合本研究結果及前人研究,推測AtRab8A蛋白質可藉由與農桿菌VirB2致病蛋白質和植物蛋白質AtRTNLB1至4和AtRTNLB8結合後,進而參與農桿菌感染植物的過程。
URI: http://hdl.handle.net/11455/92100
文章公開時間: 2017-08-31
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.