Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92103
標題: 光線與風對南仁山欖仁溪森林動態樣區樹種葉性狀之影響
Effects of light and wind on leaf traits of tree species in the Lanjenchi Forest Dynamics Plot, Nanjenshan
作者: Ruei-Cyuan Lu
盧睿泉
關鍵字: 樹冠光照度
森林結構
功能性狀
東北季風
逆境
crown illumination
forest structure
functional trait
northeast monsoon
stress
引用: 王俊能。1995。南仁山亞熱帶雨林植物葉片水份狀態在不同生育地反應的研究。國立台灣大學植物學研究所碩士論文。 吳姍樺。1998。南仁山亞熱帶雨林短期森林動態之研究。國立台灣大學植物學研究所碩士論文。 吳惠綸。2005。風對十四種樹苗葉片機械損傷之作用。國立屏東科技大學森林系碩士論文。 吳惠綸、郭耀綸。2011。迎風與背風樹種葉片耐風機械損傷及耐脫水損傷之比較。 作物、環境與生物資訊 8:185-192。 沈介文、劉興旺、郭幸榮。2004。五種台灣原生闊葉樹種苗木於不同光度下的葉部形態與解剖性狀之改變。臺大實驗實驗林研究報告 18:85-99。 唐默詩。2013。虎皮楠科之系統分類學研究。國立中山大學生物科學系研究所博士論文。 黃思博。2007。南仁山欖仁溪森林動態樣區中樹種個體死亡模型之建立。國立台灣大學生態學與演化生物學研究所碩士論文。 葉定宏。2006。南仁山欖仁溪樣區木本植物社會15年期動態。國立台灣大學生態學與演化生物學研究所碩士論文。 郭耀綸。2011。東北季風影響下林木在形態、生理和生態上的適應。53-63頁。2010、2011地球科學系統學術論壇論文集。2011。中國文化大學理學院。台北。 郭耀綸、李彥屏。2003。台灣南部南仁山迎風與背風分布樹種葉片耐脫水能力及比葉重的比較。臺灣林業科學18:283-292。 郭耀綸、李彥屏、楊月玲。2011。風對南仁山森林不同生育地分布型樹種苗木氣孔導度與葉溫的影響。台灣林業科學 26:1-16。 陳朝圳、張瑋尹。2006。東北季風對立木外部形態之影響。台灣林業32:45-53。 陳鐵如、吳鐘玲。1995。基礎氣象與農業氣象學.。淑馨出版社。台北。 蔡淑華。1975。植物組織切片技術綱要。茂昌圖書有限公司。台北。 蘇夢淮。1993。南仁山亞熱帶雨林樹冠層葉片結構之研究。國立台灣大學植物學研究所碩士論文。 謝長富、陳尊賢、孫義芳、謝宗欣、鄭育斌、王國雄、蘇夢淮。1992。墾丁國家公園熱帶雨林永久樣區之調查。內政部營建署墾丁國家公園管理處委託研究報告。 龔泊錞。2012。風對台灣低地森林樹冠結構空間與時間動態影響之研究。國立嘉義大學森林暨自然資源學研究所碩士論文。 Abrams, M. D., and M. E. Kubiske. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: influence of light regime and shade-tolerance rank. Forest Ecology and Management 31: 245-253. Anten, N. P. R., R. Alcala‐Herrera, F. Schieving, and Y. Onoda. 2010. Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytologist 188: 554-564. Burnham, K. P., and D. R. Anderson. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer. USA. Cao, K. F. 2000. Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Canadian Journal of Botany 78: 1245-1253. Cavaleri, M. A., S. F. Oberbauer, D. B. Clark, D. A. Clark, and M. G. Ryan. 2010. Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91: 1730-1739. Chao, W. C., G. Z. M. Song, K. J. Chao, C. C. Liao, S. W. Fan, S. H. Wu, T. H. Hsieh, I F. Sun, Y. L. Kuo, and C. F. Hsieh. 2010. Lowland rainforests in southern Taiwan and Lanyu, at the northern border of Paleotropics and under the influence of monsoon wind. Plant Ecology 210: 1-17. Chao, W. C., K. J. Chao, G. Z. M. Song, and C. F. Hsieh. 2007. Species composition and structure of the lowland subtropical rainforest at Lanjenchi, Southern Taiwan. Taiwania 52: 253-269. Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas, and H. Poorter. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335-380. Curran, T. J., R. L. Brown, E. Edwards, K. Hopkins, C. Kelley, E. McCarthy, E. Pounds, R. Solan, and J. Wolf. 2008. Plant functional traits explain interspecific differences in immediate cyclone damage to trees of an endangered rainforest community in North Queensland. Austral Ecology 33: 451-461. Ennos, A. R. 1997. Wind as an ecological factor. Trends in Ecology and Evolution 12: 108-111. Garcia-Verdugo, C. 2011. Intracanopy plasticity under strong wind conditions in the wild olive tree (Olea europaea L.): a conserved response between closely related taxa? Trees 25: 509-518. Garcia-Verdugo, C., C. Granado-Yela, E. Manrique, R. R. de Casas, and L. Balaguer. 2009. Phenotypic plasticity and integration across the canopy of Olea europaea subsp. guanchica (Oleaceae) in populations with different wind exposures. American Journal of Botany 96: 1454-1461. Keeling, H. C., and O. L. Phillips. 2007. A calibration method for the crown illumination index for assessing forest light environments. Forest Ecology and Management 242: 431-437. King, D. A. 1986. Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology 67: 980-990. Kozuka, T., J. Kobayashi, G. Horiguchi, T. Demura, H. Sakakibara, H. Tsukaya, and A. Nagatani. 2010. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiology 153: 1608-1618. Koch, G. W., S. C. Sillett, G. M. Jennings, and S. D. Davis. 2004. The limits to tree height. Nature 428: 851-854. Laughlin, D. C., J. J. Leppert, M. M. Moore, and C. H. Sieg. 2010. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24: 493-501. Lawton, R. O. 1982. Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany 69: 1224-1230. Leigh, A., S. Sevanto, M. C. Ball, J. D. Close, D. S. Ellsworth, C. A. Knight, A. B. Nicotra, and S. Vogel. 2012. Do thick leaves avoid thermal damage in critically low wind speeds? New Phytologist 194: 477-487. Leuzinger, S., R. Vogt, and C. Korner. 2010. Tree surface temperature in an urban environment. Agricultural and Forest Meteorology 150: 56-62. Lin, T. C., S. P. Hamburg, K. C. Lin, L. J. Wang, C. T. Chang, Y. J. Hsia, M. A. Vadeboncoeur, C. M. M. McMullen, and C. P. Liu. 2011. Typhoon disturbance and forest dynamics: lessons from a northwest Pacific subtropical forest. Ecosystems 14: 127-143. Luttge, U. 1997. Physiological Ecology of Tropical Plants. Springer Verlag. Berlin. Markesteijn, L., L. Poorter, and F. Bongers. 2007. Light-dependent leaf trait variation in 43 tropical dry forest tree species. American Journal of Botany 94: 515-525. McArthur, C., O. S. Bradshaw, G. J. Jordan, F. J. Clissold, and A. J. Pile. 2010. Wind affects morphology, function and chemistry of eucalypt tree seedlings. International Journal of Plant Sciences 171: 73-80. Molles, M. C. 2005. Ecology: concepts and applications. 3rd ed, Boston: McGraw-Hill, United State. Murren, C. J., and M. Pigliucci. 2005. Morphological responses to simulated wind in the genus Brassica (Brassicaceae): allopolyploids and their parental species. American Journal of Botany 92: 810-818. Nicoll, B. C., B. A. Gardiner, and A. J. Peace. 2008. Improvements in anchorage provided by the acclimation of forest trees to wind stress. Forestry 81: 389-398. Niinemets, U., A. Portsmuth, and M. Tobias. 2006. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist 171: 91-104. Niinemets, U., and L. Sack. 2006. Structural determinants of leaf light harvesting capacity and photosynthetic potentials. Progress in Botany 67: 385-419. Niklas, K. J. 1999. A mechanical perspective on foliage leaf form and function. New Phytologist 143: 19-31. Oldham, A. R., S. C. Sillett, A. M. F. Tomescu, and G. W. Koch. 2010. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy. American Journal of Botany 97: 1087-1097. Pacala, S. W., C. D. Canham, J. Saponara, J. A. Silander, R. K. Kobe, and E. Ribbens. 1996. Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs 66: 1-43. Parkhurst, D. F., and O. L. Loucks. 1972. Optimal leaf size in relation to environment. Journal of Ecology 60: 505-537. Pearcy, R. W., H. Muraoka, and F. Valladares. 2005. Crown architecture in sun and shade environments: assessing function and trade‐offs with a three‐dimensional simulation model. New Phytologist 166: 791-800. Peppe, D. J., D. L. Royer, B. Cariglino, S. Y. Oliver, S. Newman, E. Leight, G. Enikolopov, M. Fernandez-Burgos, F. Herrera, J. M. Adams, E. Correa, E. D. Currano, J. M. Erickson, L. F. Hinojosa, J. W. Hoganson, A. Iglesias, C. A. Jaramillo, K. R. Johnson, G. J. Jordan, N. J. B. Kraft, E. C. Lovelock, C. H. Lusk, U. Niinemets, J. Penuelas, G. Rapson, S. L. Wing, and I. J. Wright. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190: 724-739. Pigliucci, M. 2002. Touchy and bushy: phenotypic plasticity and integration in response to wind stimulation in Arabidopsis thaliana. International Journal of Plant Sciences 163: 399-408. Poorter, L., and D. M. A. Rozendaal. 2008. Leaf size and leaf display of thirty-eight tropical tree species. Oecologia 158: 35-46. Reich, P. B., I. J. Wright, J. Cavender-Bares, J. M. Craine, J. Oleksyn, M. Westoby, and M. B. Walters. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164: S143-S164. Sack, L., P. J. Melcher, W. H. Liu, E. Middleton, and T. Pardee. 2006. How strong is intracanopy leaf plasticity in temperate deciduous trees? American Journal of Botany 93: 829-839. Schindler, D., J. Bauhus, and H. Mayer. 2012. Wind effects on trees. European Journal of Forest Research 131: 159-163. Talbert, C. M., and A. E. Holch. 1957. A study of the lobing of sun and shade leaves. Ecology 38: 655-658. Tsukaya, H. 2002. The leaf index: heteroblasty, natural variation, and the genetic control of polar processes of leaf expansion. Plant and Cell Physiology 43: 372-378. Tsukaya, H. 2006. Mechanism of leaf-shape determination. The Annual Review of Plant Biology 57: 477-496. Turner, I. M. 1994. Sclerophylly: primarily protective? Functional Ecology 8: 669-675. Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116: 882-892. Vogel, S. 1989. Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany 40: 941-948. Westoby, M., and I. J. Wright. 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution 21: 261-268. Whitehead, F. H. 1962. Experimental studies of the effect of wind on plant growth and anatomy. New Phytologist 61: 59-62. Whitmore, T. C. 1996. A review of some aspects of tropical rain forest seedling ecology with suggestions for further enquiry. In M. D. Swaine [ed.], The ecology of tropical forest tree seedlings, 3-39. Programme on Man and the Biosphere, UNESCO series, vol. 17. Parthenon, Paris, France. Wright, I. J., P. B. Reich, J. H. C. Cornelissen, D. S. Falster, P. K. Groom, K. Hikosaka, W. Lee, C. H. Lusk, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, D. I. Warton, and M. Westoby. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411-421. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
摘要: Both wind and light are important environmental factors in a forest ecosystem. Plants growing in a strong wind or high light environment often show similar features of leaf traits. The aim of this study is the first time to explore the both effects of strong wind, light environments and related environmental factors on leaf traits of trees in a forest, and to compare the interspecific and intraspecific differences. The study site is located in the Lanjenchi Forest Dynamics Plot (Lanjenchi FDP) in Nanjenshan, Taiwan, where constantly exposed to northeast monsoon during late autumn to early spring. Seven tree species with widely distribution range were selected for this study, which can be found in three types of habitats, including windward region, leeward region and valley. The individuals which had better crown illumination status than others in the same habitats were chosen for collecting leaves. For each individual, leaves were collected from four quarters where the division is based on canopy layer (upper and lower) and the canopy direction facing the northeast monsoon or not (northeast and southwest). Eleven morphological and anatomical leaf traits were measured. The results showed that most of the leaf traits of many species have no significant difference among habitats where were exposed to different degrees of prevailing wind speeds. The effects of canopy direction are also insignificant on most of the leaf traits. However, the effects of canopy layer and crown illumination are significant on most of the leaf traits and show interspecific consistency. Therefore, light may show more critical influences than strong wind on the leaf traits. In addition, the results indicate that the crown illumination statuses among habitats show interspecific inconsistency, and each species possesses better crown illumination statuses in its dominant habitat. These results could be due to (1) the differences of forest structure among habitats and (2) the differences of habitat-specific dominancy among species. Both of the two causes are influenced by northeast monsoon in the Lanjenchi FDP. Although the results revealed that light has direct and significant effects on the leaf traits, the adaption of forest community to the stress of strong wind might be the indirect cause, affecting the wind and light microenvironments of individuals.
在森林生態系中,風與光皆為重要的環境因子。而植物在強風與高光照的環境下,葉性狀會表現相似的特徵。本研究旨在首次共同探討強風和光照相關環境因子對森林樹木葉性狀的影響,並比較種間和種內之表現異同。研究地點位在台灣南部的南仁山欖仁溪森林動態樣區,當地每年秋天至隔年春天期間盛行東北季風。研究材料為迎風區、背風區以及溪谷區3種生育地內皆有的7種廣泛分布樹種。採樣對象挑選自各生育地內光照度較佳之個體,每株個體依照樹冠層次高低與季風風向將樹冠分為4區塊進行葉片採樣,並測量11項葉形態和解剖性狀。 研究結果發現大部分樹種在多數葉性狀表現上並未反映其生育地間的風速差異,樹冠方向對葉性狀的影響也多不呈顯著。反觀樹冠上下層次以及個體樹冠光照度對葉性狀的影響則較顯著,並且於樹種間有較一致的趨勢。此顯示光照相關因子對葉性狀的影響可能比強風相關因子的影響更重要。此外,本研究亦發現不同樹種在各生育地之間的個體樹冠光照度並不一致,各樹種在其優勢度較高的生育地內具有較佳的樹冠光照度。本研究推論導致各樹種於生育地間具光環境差異的原因有二:(1)生育地間森林結構的差異,(2)各樹種不同的生育地優勢度,而此兩者皆與欖仁溪樣區受東北季風的影響有關。因此,本研究結果雖然指出光環境對葉性狀表現的直接影響較顯著,但也認為森林群聚(此一適應強風逆境的結果)可能間接影響樹木個體強風與光照的微環境,進而影響葉性狀之表現。
URI: http://hdl.handle.net/11455/92103
文章公開時間: 2016-01-28
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.