請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/92129
標題: 小球藻Chlorella sp.產氫酶突變株具有較高氧氣耐受性並可產生較多氫氣
Green alga Chlorella sp. hydrogenase mutants have higher O2 tolerance and produce more H2
作者: Da-Wei Yang
楊大緯
關鍵字: 綠藻
產氫?
氫氣
Chlorella
hydrogenase
hydrogen
引用: Abendroth GV, Stripp S, Silakov A, Croux C, Soucaille P, Girbal L, Happe T (2008) Optimized over-expression of [FeFe] hydrogenase with high specific activity in Clostridium acetobutylicum. Int J Hydrogen Energy 33: 6076-6081. Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607: 153–160. Cammack R (1999) Hydrogenase sophistication. Nature 397: 214-215. Chader S, Hacene H, Agathos SN (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int J Hydrogen Energy 34: 4941–4946. Chen PC, Lai CL (1996) Physiological adaptation during cell dehydration and rewetting of a newly-isolated Chlorella species. Plant Physiol 96: 453–457. Chen MW (2005) Functional expression of mercuric reductase in microalga Chlorella sp. DT. Master thesis of the Department of Life Science, National Chung-Hsing University, Taiwan. Chien LF, Kuo TT, Liu BH, Lin HD, Feng TY, Huang CC (2012) Solar-to-bioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J hydrogen energy 37: 17738-17748. Cohen J, Kim K, King P, Seibert M, Schulten1 K (2005) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13: 1321–1329. Dubini A, Ghirardi ML (2014) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res DOI: 10.1007/s11120-014-9991-x Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276: 6125-6132. Forestier M, King P, Zhang LP, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270: 2750-2758. Gaffron H (1940) The oxyhydrogen reaction in green algae and the reduction of carbon dioxide in the dark. Science 91: 529–530. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 20: 219–240. Ghirardi ML, Seibert M (2003) Algal systems for hydrogen photoproduction. National Renewable Energy Laboratory (NREL) FY 2003 Progress Report. Ghirardi ML, King P, Seibert M (2003) Oxygen-resistant hydrogenases and methods for designing and making same. Patent US7501270. Ghirardi ML, Cohen J, King P, Schulten K, Kim K, Seibert M (2006) [FeFe]-hydrogenases and photobiological hydrogen production. Solar Hydrog Nanotechnol 6340: 1-6. Hamdan A, Liebgott PP, Fourmond V, Guti?rrez SO, Lacey AL, Infossi P, Rousset M, Dementin S, L?ger C (2012) Relation between anaerobic inactivation and oxygen tolerance in a large series of NiFe hydrogenase mutants. Proc Natl Acad Sci 109: 19916-19921. Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269: 1022-1032. Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222: 769-774. Huang CC, Chen MW, Hsieh JL, Lin WH, Chen PC, Chien LF (2006) Expression of mercuric reductase from bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72: 197-205. Kajan S, Michael EP, Perry CC (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102: 8589-8604. Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102: 8423-8431. Kim J.P, Kang CD, Park TH, Kim MS, Sim SJ (2006) Enhanced hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture. Int J Hydrogen Energy 31: 1585-1590. Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Physiol 44: 146-155. Laurinavichene T, Tolstygina I, Tsygankov A (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J Biotech 114: 143-151. Leroux F, Dementin S, Burlat B, Cournac L, Volbeda A, Champ S, Martin L, Guigliarelli B, Bertrand P, Camps JF, Rousset M, Leger L (2008) Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc Natl Acad Sci 105: 11188-11193. Liebgott PP, Lacey AL, Burlat B, Cournac L, Richaud P, Brugna M, Fernandez VM, Guigliarelli B, Rousset M, Leger C, Dementin S (2011) Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J Am Chem Soc 133: 986-997. Lin HT (2010) PsbA or PsbO suppression leads to hydrogenase induction in Chlorella sp. DT. Master thesis of the Department of Life Science, National Chung-Hsing University, Taiwan. Lin WH (2004) The change in Chlorella photosynthesis and superoxide dismutase activity under low temperature/relavively high irradiation stress. Master thesis of the Department of Life Science, National Chung-Hsing University, Taiwan. Ma W, Chen M, Wang L, Wei L, Wang Q (2011) Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii. Bioresour Technol 18: 8635-8638. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127: 740-748. Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122: 127-135. Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellurlar green algae). Planta 226: 1075-1086. Morra S, Giraudo A, Di NG, King PW, Gilardi G, Valetti F (2012) Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS One 7(10): e48400. Mulder DW, Shepard CM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19: 1038-1052. Peters JW, Szilagyi RK, Naumov A, Douglas T (2006) A radical solution for the biosynthesis of the H-cluster of hydrogenase. FEBS Lett 580: 363–367. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-Adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279: 25711-25720. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chamydomonas reinhardtii by electroporation. Genetics 148: 1821-1828. Stephenson M, Stickland LH (1931) Hydrogenase: a bacterial enzyme activating molecular hydrogen. Eur J Biochem 25: 205-214. Stiebritz MT, Reiher M (2009) Theoretical study of dioxygen induced inhibition of [FeFe]-hydrogenase. Inorg Chem 48: 7127–7140 Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenase from photosynthetic organisms. Proc Natl Acad Sci 106: 17331-17336. Tsygankova AA, Kosourova SN, Tolstyginaa IV, Ghirardi ML, Seibert M (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrogen Energy 31: 1547-1584. Vignais PM, Billoud B Meyer J (2001) Classification and phylogeny of hydrogenase. FEMS Microbiol Rev 54: 455-501. Vignais PM, Colbeau A (2004) Molecular biology of microbial hydrogenases. Mol Biol 6: 159–188. Wang H, Fan X, Zhang Y, Yang D, Guo R (2011) Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion. Biotechnol Lett 33: 1345-1350. Winkler M, Esselborn J, Happe T (2014) Molecular basis of [FeFe]-hydrogenase function an insight into the complex interplay between protein and catalytic cofactor. Biochim Biophys Acta 1827: 974-985. Winkler M, Heil B, Heli B, Happe T (2002) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576: 330-334. Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284: 36620–36627.
摘要: Green algae have a photosynthetic system similar to plants but can produce H2 by hydrogenase (HydA, encoded by hydA) using sun light under anaerobic condition, as O2 is a strong inhibitor of HydA. The catalytic H-cluster of the HydA is located in close proximity to O2 accessible area, termed the gas channel. The mutated amino acid residues around the gas channel could narrow the channel and in turn lower the access of O2. In this study, we attempted to mutate certain amino acids around Zone 1 and Zone 3 of gas channel so that the mutated HydA can have high O2 tolerance to enhance H2 production in Chlorella sp. DT (DT). The specific amino acids along the O2 pathways were modified by site-directed mutagenesis with the goal of preventing the O2 entrance to the H-cluster. The residues A105 and V265 of Zone 1, and the residues G113 and V273 of Zone 3 proximal to the active site around the gas channel were replaced with amino acids I and W with bulky group by site-direct mutagenesis. The mutated hydA of pHyg3-hydA was inserted to DT mutants genomic DNA by electroporation. The hydA of the DT mutants could be transcribed but not that of DT-WT under aerobic and sulfur-supplied condition. We confirmed the key amino acids of A105I, V265W, G113I and V273I around the gas channel of hydA were successfully mutated. By western blotting analysis, using anti-HydA, the detectable signal of HydA protein band of 48 kDa was visualized in DT mutants but not in the DT-WT under aerobic and sulfur-supplied condition. The HydA protein expression levels of Zone 1 and Zone 3 DT mutants were 10 and 14 fold higher than that of the DT-WT. The H2 contents of Zone1 and Zone 3 DT mutants are 5.8 and 6.4 fold higher than that of DT-WT under 5% O2 condition. These results suggested that the Zone1 and Zone 3 DT mutants with higher O2 tolerance than DT-WT can produce more H2.
綠藻有類似植物光合作用系統,可以將太陽能轉換成電子提供給產氫? (hydrogenase, HydA),HydA可在缺氧 (O2) 條件下產生氫氣 (H2),但是光合作用產生的O2是HydA的抑制劑。O2可經由HydA氣體通道 (gas channel) 進入其催化中心的H-cluster而抑制HydA。突變gas channel的特定胺基酸可以使gas channel縮小,進而減少O2進入H-cluster。本篇的研究中,我們嘗試突變HydA gas channel的Zone1和Zone3幾個特定胺基酸,期望綠藻Chlorella sp. DT (DT) 的HydA 具有較高O2耐受性及H2產量。 利用pHyg3-hydA載體以定點突變 (site-direct mutagenesis) 方法,使位於Zone1的A105和V265以及位於Zone3的G113和V273,突變為有較大支鏈的I和W。再將含有突變hydA的載體轉殖至DT,並篩選DT突變株。利用聚合連鎖反應,偵測到DT突變株含有轉殖hydA片段,得知突變hydA已成功被轉殖於DT。在有O2和S條件下,偵測到DT突變株hydA的轉錄,但DT野生株則沒有。又定序DT突變株之genomic DNA,確定gas channel的胺基酸A105I、V265W、G113I及V273I突變成功。在有O2和S條件下,利用西方墨點法分析DT突變株之蛋白表現,於48 kDa位置偵測到HydA蛋白,而DT野生株則沒有HydA蛋白表現。Zone1和Zone3 DT突變株之HydA蛋白表現量相較於DT野生株高出了10倍和14倍。在5% O2的條件下,Zone1和Zone3 DT突變株之H2產量相較於DT野生株則高出了5.8倍和6.4倍。綜合以上結果,Zone1和Zone3 DT突變株相較於DT野生株有較高的O2耐受性並且有較多H2產量。
URI: http://hdl.handle.net/11455/92129
文章公開時間: 10000-01-01
顯示於類別:生命科學系所

文件中的檔案:
檔案 描述 大小格式 
nchu-103-7100052320-1.pdf6.26 MBAdobe PDF 請求副本


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。