Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92147
標題: 探討大漢溪畔表面流人工濕地之除氮機制
Nitrogen removal mechanism of two free-water surface constructed wetlands along the Dan-Han Stream
作者: Mei-Li Hsueh
薛美莉
關鍵字: 氮削減
表面流人工濕地
水生植物
硝化作用
脫硝作用
厭氧氨氧化作用
硝化潛能
硝化菌
脫硝菌
Nitrogen removal
free water surface constructed wetland
aquatic macrophyte
nitrification
denitrification
anaerobic ammonia oxidation
Ammonia oxidation potential
nitrifying microbe
denitrifying microbe
引用: Allen, J.G., Beutel, M.W., Call, D.R., Fischer, A.M., 2010. Effects of oxygenation on ammonia oxidation potential and microbial diversity in sediment from surface-flow wetland mesocosms. Bioresource Technol. 101, 1389–1392. Anderson, C.J., and Mitsch, W., 2005. Effect of plusing on macrophyte productivity and nutrient uptake: a wetland mesocosm experiment. Am. Midl. Nat.154,305-319. Armstrong, J., Armstrong, W., Beckett, P.M., 1990. Measurement and modeling of oxygen release from roots of Phragmites australis. In: Constructed Wetlands in Water Pollution Control, Cooper P.F., Findlater B.C. (eds.) Pergamon Press: Oxford, United Kingdom, pp. 41–52. Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W., and Beckett, P. M., 2000. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modeling study with Phragmites australlis. Ann. Bot. 86:678-703. Atlas, R.M. and Bartha R. 1998. Biogeochemical cycling: nitrogen, sulfur, phosphorus, iron, and other elements. In: 4th ed. Microbial ecology: fundamentals and applications. Benjamin/Cummings Science. pp.414-461. Austin D.C., Lohan E., Verson, E., 2003. Nitrification and denitrification in a tidal vertical flow wetland pilot. Proceedings, WEFTEC 2003 National Conference, 76th Annual Conference and Exhibition; Water Environment Federation:Alexandria, Virginia. Bachand, P.A.M., and Horne, A.J., 1999a. Denitrification in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study. Ecol. Eng. 14, 9-15. Bachand, P.A.M., and Horne, A.J., 1999b. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol. Eng. 14, 17-32. Bastviken, S. K., Eriksson, P. G., Premrov, A., and Tonderski, K., 2005. Potential denitrification in wetland sediments with different plant species detritus. Ecol. Eng. 25:183-190. Bedard-Haughn, A., Matson, A.L., and Pennock, D. 2006. Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands. Soil Biology and Biochemistry. 38: 3398-3406. Brisson, J., and Chazarenc, F., 2009. Maximizing pollutant removal in constructed wetlands:Should we pay more attention to macrophyte species selection? Sci. Total Environ. 407, 3923–3930. Brix, H., 1994. Functions of macrophytes in constructed wetlands. Water Sci. Technol. 29, 71–78. Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Wat. Sci. Tech. 35, 11–17. Brock, M. A. and Casanova, M. T., 1997. Plant life at the edges of wetlands: ecological responses to wetting and drying patterns. pp. 181 - 192. In: Klomp, N. and I. Lunt.eds. Frontiers in Ecology: Building the Links. Elsevier Science, Oxford. Burchell II, M.R., Skaggs, R.W., Lee, C.R., Broome, S., Chescheir, G.M., and Osborne, J., 2007. Substrate organic matter to improve nitrate removal in surface-flow constructed wetlands. J. Environ. Qual. 36, 194–207. Camargo, J.A., and Alonso, A., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831-849. Cejudo-Espinosa, E., Ramos-Valdivia, A. C., Esparza-García, F., Moreno-Casasola,P., and Rodriguez-Vazquez, R., 2009. Short-term accumulation of atrazine by three plants from a wetland model system. Arch. Environ. Contam.Toxicol. 56, 201 -208. Clarke, K. R., and Gorley, R. N., 2006. Primer v6: user manual/tutorial. PRIMER-E Ltd, Barbican, UK. Cookson, W.R., Comforth, I.S., Rowarth, J.S., 2002. Winter soil temperature (2-15 0C) effects on nitrogen transformationin clover green manureamended or unamended soils; a laboratoryand field study. Soil Biol. B iochem. 34, 1401-1415. Coombs, J., and Hall, D. O., 1982. Techniques in Bioproductovity and Photosynthesis. Pergamon Press, UK. Dalagaard, T., Thamdrup, B., and Canfield, D. E., 2005. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 156: 457-464. Dalssgaard, T., Canfield, D.E., Peterson, J., Thamdrup, B. and Acuña-Gonzã, J., 2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606-608. Dierberg F.E., and Brezonik P.L. 1983. Nitrogen and phosphorus mass balances in natural and sewage enriched cypress domes. Journal of Applied Ecology, 20: 323-337. Ding, Y., Song, X., Wang, Y., and Yan, D., 2012. Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland. Ecol. Eng. 46, 107–111. Dong, X., and Reddy, G.B., 2012. Ammonia-oxidizing bacterial community and nitrification rates in constructed wetlands treating swine wastewater. Ecol. Eng. 40, 189–197. Dong, Z., and Sun, T., 2007. A potential new process for improving nitrogen removal in constructed wetlands—Promoting coexistence of partial-nitrification and ANAMMOX. Ecol. Eng. 31, 69–78. Edwards, K.R., Čižková, H., Zemanová, K., and Šantrůčková, H., 2006. Plant growth and microbial processes in a constructed wetland planted with Phalaris arundinacea. Ecol. Eng. 27, 153–165. Erisman, J. W., Hensen, A., Vries, W. de, Kros, H., Wal, T. van de, Winter, W. de, Wien, J. E., Elswijk, M. v, Maat, M., and Sanders, K., 2002. Nitro Genius: A Nitrogen Decision Support System. AMBIO, 31:190-196. Erler, D. V., Eyre, B. D., and Davison, L., 2008. The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland. Environ. Sci. Technol. 42: 9144-9150. Faulwetter, J.L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M.D., Brisson, J., Camper, A.K., and Stein, O.R., 2009. Microbial processes influencing performance of treatment wetlands: a review. Ecol. Eng. 35, 987–1004. Fisher, J., C. J. Stratford and S. Buckton. 2009. Variation in nutrient removal in three wetland bloCks in relation to vegetation Composition, inflow nutrient Concentration and hydraulic loading. Ecological Engineering 35:1387–94. Francis, C. A., Beman,J. M., and Kuypers, M. M. M., 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1:19-27. Galloway, J. N., 1998. The global nitrogen cycle: changes and consequences. Environmental Pollution, 102, 15-24. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B. and Cosby, B. J., 2003. The Nitrogen Cascade. BioScience, 53:341-356. Galloway, J. N., and Cowling, E. B., 2002. Reactive Nitrogen and the World: 200 Years of Change. AMBIO, 31:64-71. Galloway, J. N., Cowling, E. B., Seitzinger, S. P. and Socolow, R. H., 2002. Reactive Nitrogen: Too Much of a Good Thing? AMBIO, 31:60-63. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R. and Vörösmarty, C. J., 2004. Nitrogen cycles: past, present, and future. Biogeochemistry, 70: 153–226. Galloway, J. N., Townsend, A. R., Erisman, J. W. , Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889-892. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney J. R., Martinelli, L.A., Seitzinger, S.P., and Sutton, M.A., 2008. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320: 889-892. García, J., Salas, J.J., Martin, I., and Vymazal, J., 2013. Research and innovation on ecotechnologies applied to improve wastewater treatment efficiency. Ecol. Eng. 50, 1–4. García-Lledóoa, A., Ruiz-Rueda, O., Vilar-Sanza, A., Salab, L., and Bañerasa, L. 2011 Nitrogen removal efficiencies in a free water surface constructed wetland inrelation to plant coverage. Ecol. Eng., 36, 678-684. Garfí, M., Pedescoll, A., Bécares, E., Hijosa-Valsero, M., Sidrach-Cardona, R., and García, J., 2012. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Sci Total Environ 437, 61-67. Gerardi, M.H., 2002. Nitrification and Denitrification in the Activated Sludge Process. John Wiley and Sons, Inc., New York. Goolsby, D.A., Battaglin,W.A., Aulenbach, B.T., and Hooper, R.P., 2000.Nitrogen flux and sources in the Mississippi River Basin. Sci. Total Environ. 248, 75-86. Gottschall , N., Boutinb, C., Crolla, A., Kinsley, C., and Champagne, P., 2007. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol. Eng. 29, 154–163. Goulet, R. R., Lalonde, J. D., Munger, C., Dupuis, S., Dumont-Frenette, G., Prémont S., and Campbell, P. G. C., 2005. Phytoremediation of effluents from aluminum smelters: A study of Al retention in mesocosms containing aquatic plants. Wat. Res. 39, 2291 - 2300. Greenway, M..1997. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water and Science Technology 35(5):135–42. Gruber, N. and Galloway, J. N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451:293-296. Hamersley, M. R., Lavik, G., and Woebken, D., 2007. Anaerobic ammonia oxidation In the Peruvian oxygen minimum zone. Limnol. Oceanogr. 52:923-933. Hanaki, K., Chalermraj, W., and Shinichiro, O., 1990. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res. 24, 297–302. Hart, S.C., Stark, J.M., Davidson, E.A., and Firestone, M.K., 1994. Nitrogen mineralization immobilization and nitrification. In: Weaver, R.W., Angle, J.S., Bottomley, P.S.(Eds.), Methods of Soil Analysis Part 2. Microbiological and Biochemical Properties. Soil Science Society of America Book Series #5, Madison, WI, pp.985–1018. He, Y., Tao, W., Wang, Z., and Shayya, W., 2012. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands. J. Environ. Manage. 110, 103–109. He, Y., Zhou, G. M., and Zhao, Y. C., 2007. Nitrification with high nitrite accumulation for the treatment of 'old' landfill leachates. Environ. Eng. Science 24:1084-1095. Heathwaite, A. L., 2010. Multiple stressors on water availability at global to catchment scales: understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshwater Biology, 55: 241–257. Hernandez, M. E. and Mitsch, W. J.. 2007. Denitrification in created riverine wetlands: Influence of hydrology and season. Eco. Eng. 30: 78-88. Herrman, K. S. and White, J. R., 2008. Denitrification in intact sediment cores from a constructed wetland: Examining the isotope pairing technique. Appl. Geochem. 23: 2105-2112. Herrmann, M., Saunders, A. M., and Schramm, A., 2008. Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl. Environ. Microbiol. 74:3279-3283. Holland, E.A., Dentener, F.J., Braswell, B.H., and Sulzman, J. M., 1999. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46, 7–43. Horvat B., Berčič, O.U., and Alenka, G., 2008. Water quality and macrophyte community changes in the Komarnik accumulation Lake (Slovenia). In: Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands, Ed. Vymazal J., Springer, Netherlands, 13-22. Howarth, R.W., 2008. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 8, 14-20. Hsu, C.B., Hsieh, H.L., Yang, L., Wu, S.H., Chang, J.S., Hsiao, S.C., Su, H.C., Yeh, C.H., Ho, Y.S., and Lin, H.J., 2011. Biodiversity of constructed wetlands for wastewater treatment. Ecol. Eng. 37, 1533–1545. Hume, N. P., Fleming, M. S., and Alexander, J. H., 2002. Plant carbohydrate limitation on nitrate reduction in wetland microcosms. Water Rse. 36:577-584. Hunt, P.G., Matheny, T.A., and Szögi, A.A., 2003. Denitrification in constructed wetlands used for treatment of swine wastewater J. Environ. Qual. 32:727-735. Hunt, P.G., Stone, K.C., Matheny, T.A., Poach, M.E., Vanotti, M.B., and Ducey, T.F., 2009. Denitrification of nitrified and non-nitrified swine lagoon wastewater in the suspended sludge layer of treatment wetlands. Ecol. Eng. 35, 1514–1522. Iamchaturapatr, J., Su, W. Y., and Jae, S. R., 2007. Nutrient removals by aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecol. Eng. 29, 287 -293. Ibekwe, A. M., Lyon, S. R., Leddy, M. and Jacobson-Meyers, M., 2007. Impact of plant density and microbial composition on water quality from a free water surface constructed wetland. J Appl. Microbiol. 102:921-936. Jia, W., Zhang, J., Li, P., Xie, H., Wu, J., and Wang, J., 2011. Nitrous oxide emissions from surface flow and subsurface flow constructed wetland microcosms: effect of feeding strategies. Ecol. Eng. 37, 1815–1821. Jing, S.R., and Lin, Y. F., 2004. Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan. Environ. Eng., 127, 291-301. Jing, S.R., Lin, Y.F., Shih, K.C., and Lu, H.W., 2008. Applications of constructed wetlands for water pollution control in Taiwan: review. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 12, 249–259. Johnston, C.A., 1991. Sediments and nutrient retention by freshwater wetlands: effects on surface water quality, CRC Crit. Rev. Environ. Control 21: 491-565. Joshi, K., Joseph J., Srinikethan G., and Saidutta M.B. 2014. Isolation and characterization of Pseudomonas syringae for nitrate removal under aerobic conditions. J. Biochem. Tech. 5:593-697. Kadlec, R. H. and Knight. R. L., 1996. Treatment wetlands. Lewis Publishers, CRC Press, Boca Raton, Florida, U.S.A. p.893 Kadlec, R.H., 2008. The effects of wetland vegetation and morphology on nitrogen processing. Ecol. Eng. 33, 126–141. Kadlec, R.H., and Reddy, K.R., 2001. Temperature effects in treatment wetlands. Water Environ. Res. 73(5), 543-557. Kadlec, R.H., and Wallace, S.D., 2008. Treatment Wetlands, 2nd ed. CRC Press, Boca Raton, Kern J., 2003. Seasonal efficiency of a constructed wetland for treating dairy farm wastewater. In: Constructed Wetlands for Wastewater Treatment in Cold Climates, Mander U., Jenssen P. (eds.) WIT Press: Southampton, United Kingdom, pp. 197–214. Kjellin, J., S. Hallin and Wörman, A., 2007. Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure. Water Res. 41: 4710-4720. Klomjek, P. and Nitisoravut, S., 2005. Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere. 58: 585 - 593. Könneke, M., Bernhard, A.E., Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A., 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. Koottatep, T., and Polprasert, C., 1997. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Wat. Sci. Tech. 36, 1–8. Kowalchuk, G. A., and Stephen, J. R., 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55:485-529. Kozub, D.D., and Liehr, S.K., 1999. Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate. Wat. Sci. Tech. 40, 75–82. Kumar, M. and Lin, J. G., 2010. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal — Strategies and issues. J. Hazard. Mater. 178: 1-9. Kuschk, P., WieXner, A., Kappelmeyer, U., Weiβbrodt, E., Kästner M., and Stottmeister, U., 2003. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res. 37: 4236-4242. Kuypers, M. M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jørgensen, B. B., Kuenen, J. G., Damsté, J. S. S., Strous, M., and Jetten, S. M., 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422(10): 608-611. Lee, C.G., Fletcher, T.D., and Sun, G., 2009. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 9, 11–22. Lia, Z.G., Linb, L., Sagisakab, M., Yanga, P., and Wua, W. B., 2012. Global-scale modelling of potential changes in terrestrial nitrogen cycle from a growing nitrogen deposition. Procedia Environmental Sciences, 13:1057 – 1068. Liang, M.Q., Zhang, C.F., Peng, C.L., Lai, Z.L., Chen, D.F., and Chen, Z.H., 2011. Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecol. Eng. 37, 309–316. Lin, Y. F., Jing, S. R., Wang, T. W., and Lee, D. Y., 2002. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ. Pollut. 119:413-420. Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F., Shih, K.C., 2007. Nitrate removal and denitrification affected by soil characteristics in nitrate treatment wetlands. J. Environ. Sci. Heal. A 42, 471–479. Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F. and Shih, K. C., 2008. Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates. Bioresour. Technol. 99:7504-7513. Maltais-Landry, Maranger, G., R., Brisson, J., and Chazarenc, F., 2009. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands Water Res. 43:535-545. Maris, C.P., Neill, C., and Cerri, C., 1994. Net nitrogen mineralization and net nitrification along a tropical forest-to-pasture chronosequence. Plant Soil 162:61-70. Meyer, R.L, Risgaard-Petersen, N., and Allen, D.E., 2005. Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment, Appl. Environ. Microbiol. 71: 6142-6149. Mitsch, W.J., Jøgensen, S.E., 2003. Ecological Engineering and Ecosystem Restoration. John Wiley and Sons, Inc. Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. John Wiley and Sons, Inc., New York, NY, U.S.A. Mitsch, W. J., Li, Z., Anderson, C. J., Altor, A.E., and Hernández, M. E., 2005.Creating riverine wetlands: Ecological succession,nutrient retention, and pulsing effects. Ecol. Eng. 25, 510–527. Mulder, A., De Van Graaf, A. A., Robertson, L. A. , and Kuenen, J. G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16:117-184. Nahlik, A.M., and Mitsch, W.J., 2006. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol. Eng. 28, 246–257. Nicolaisen, M.H., Risgaard-Petersen, N., Revsbech, N.P., Reichardt, W., and Ramsing, N.B., 2004. Nitrification–denitrification dynamics and community structure of ammonia oxidizing bacteria in a high yield irrigated Philippine rice field. FEMS Microbiol. Ecol. 49, 359–369. Nikolausz, M., Kappelmeyer, U., A., Székely, Rusznyák, A., Maárialigeti, K., and Kästner, M., 2008. Diurnal redox fluctuation and microbial activity in the rhizosphere of wetland plants. Eur. J. Soil biol. 44:324-333. Nixon, S.W., and Lee, V., 1986. Wetlands and Water Quality: A Regional Review of Recent Research in the United States on the Role of Freshwater and Saltwater Wetlands as Sources, Sinks, and Transformers of Nitrogen, Phosphorus, and Various Heavy Metals. U.S. Army Corps of Engineers, Technical Report Y-86-2 Vicksburg, Mississippi, USA. Oenema, O., and Pietrzak, S., 2002. Nutrient Management in Food Production: Achieving Agronomic and Environmental Targets. AMBIO, 31:159-168. Palmer, H., Beutel, M., and Gebremariam S., 2009. High rates of ammonia removal in experimental oxygen-activated nitrification wetland mesocosms. J. Environ. Eng-ASCE 135, 972–979. Paredes, D., Kuschk, P., Mbwette, T. S. A., Stange, F., Muller, R. A., and Köser, H., 2007. New aspects of microbial nitrogen transformations in the context of wastewater treatment-a review. Eng. Life Sci. 7:13-25. Poe, A. C., M. F. Piehler, S. P. Thompson and H. W. Paerl. 2003. Denitrification in a constructed wetland reciving agricultural runoff. Wetlands 23: 817-826. Prosser, J. I., and Nicol, G. W., 2008. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10:2931-2941. Rabalais, N. N., 2002. Nitrogen in Aquatic Ecosystems. AMBIO, 31:102-112. Rahmani, H., J. L. Rols, B. Capdeville, J. C. Cornier, and A. Deguin. 1995. Nitrite removal by a fixed culture in a submerged granular biofilter. Water Reserve 29: 1745-1753. Reddy, K. R., and D'Angelo, E. M., 1997. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci. Technol. 35:1-10. Reed S.C., Crites R., and Middlebrooks, E.J., 1995. Natural Systems for Waste Management and Treatment. Second Edition, McGraw-Hill: New York. Rittmann, B.E., and McCarty, P.L., 2001. Environmental biotechnology: principles and applications. McGraw-Hill, New York, pp. 470-474. Rotthauwe, J.-H., Witzel, K.-P. and Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63:4704-4712. Ruiz-Rueda, O., Hallin, S., and Bañeras, L., 2008. Structure and function of denitrifying bacteria and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol. Ecol. 67: 308-319. Rysgaard, S., Glud, R. N., Risgarrd-Petersen, N., and Dalsgaard, T., 2004. Denitrification and anammox activity in Arctic marine sediment. Limnol. Oceanogr. 49(5): 1493-1502. Santoro, A. E., Francis, C. A., De Sieyes, N. R., and Boehm, A. B., 2008. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ. Microbiol. 10:1068-1079. Sartoris, J. J, Thullen, J. S., Barber, L. B., and Salas, D. E., 2000. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland. Ecol. Eng. 14, 49–65. Schmidt, I., Hermelink, C., van de Pas-Schoonen, K., Strous, M., op den Camp, H.J., Kuenen, J.G., and Jetten, M.S.M., 2002. Anaerobic ammonia oxidation in the presence of nitrogen oxides (NOx) by two different lithotrophs. Appl. Environ. Microbiol. 68, 5351-5357. Schmidt, I., Sliekers, O., Schmid, M., Bock E., Fuerst J., Kuenen J.G., Jetten, M.S.M., and Strous, M., 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. 27,481-492. Schwartz L.N., Wallace P.M., Gale P.M., Smith W.F., Wittig J.L., and McCarty S.L., 1994. Orange County Eastern Service Area reclaimed water reuse system. Water Science and Technology, 29, 273–282. Senzia, M.A., Mashauri. D.A., and Mayo, A.W., 2003. Suitability of constructed wetlands and waste stabilisation ponds in wastewater treatment: nitrogen transformation and removal. Phys. Chem. Earth 28, 1117–1124. Shapleigh, J.P. 2006. The denitrifying prokaryotes. Prokaryotes 2:79-792. Shen, J. P., Zhang, L.M., Zhu, Y.G., Zhang, J.B., and He, J.Z., 2008. Abundance and composition of ammonia-oxidizing bacteriaand ammonia-oxidizing archaea communities of an alkalinesandy loam. Environ. Microbiol. 10:1601-1611. Sirivedhin, T., and Gray, K. A., 2006. Factors affectiong denitrification rates in experimental wetlands: field and laboratory studies. Ecol. Eng. 26:167-181. Smil, V., 2002. Nitrogen and Food Production: Proteins for Human Diets. AMBIO, 31:126-131. Smit, E., Leeflang, P., and Wernars, K., 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23:249-261. Smith, L. K., Sartoris, J. J., Thullen, J. S. and Andersen, D.C., 2000. Investigation of denitrification rates in an ammonia-dominated constructed wastewater-treatment wetland. Wetlands 20: 684-696. Spieles, D. J., and Mitsch W. J., 2000. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: A comparison of low- and high- nutrient riverine systems. Ecol. Eng. 14:77-91. Stein, O.R., and Hook, P.B., 2005.Tempeerature, plants and oxygen: how does season affect constructed wetland performance? J. Environ. Sci. Health Part A 40 (6-7), 1331-1342. Stephen, J. R., Kowalchuk, G. A., Bruns, M. A. V., McCaig, A. E., Phillips, C. J., Embley, T. R., and Prosser, J. I., 1998. Analysis of β-subgroup protobacterial ammonia oxidizer population in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 64:2958-2965. Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., Pas-Schoonen, K. T. , Van De Webb, R.. Kuenen,J. G., and Jetten, M. S. M., 1999. Missing lithotroph identified as new planctomycete. Nature 400:446-449. Strous, M., Heijinen, J. G., Kuenen, J.G., Jetten, M.S.M., 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonimum oxidizing microorganism. Appl. Microbiol. Biotechinol. 50, 589-596. Strous, M., Kuenen, J. G., and Jetten, M. S. M., 1999. Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 65(7): 3248-3250. Strous, M., Kuenen, J.G., and Jetten, M.S. 1999. Key physiology of anaerobic ammonium oxidation. App. Environ. Microb. 3246-3158. Strous, M., Van Gerven, E., Ping, Z., Kuenen, J. G. and Jetten, M. S. M., 1997. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation process. Water Res. 31:1955-1962. Sun, G., and Austin, D., 2007. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study . Chemosphere 68, 1120–1128. Sundberg, S. E., Hassan, S. M. and Rodgers Jr., J. H., 2006. Enrichment of elements in detritus from a constructed wetland and consequent toxicity to Hyalella azteca. Ecotoxicology and Environmental Safety 64:264–72. Tanner, C. C. 1996. Plants for constructed wetland treatment systems –A comparison of the growth and nutrient uptake of eight emetgent species. Ecol. Eng. 7: 59 - 83. Taylor, B.R., and Helwig, J., 1995. Submergent macrophytes in a cooling pond in Alberta, Canada. Aquatic Botany,51,243-257. Thamdrup, B. and Dalsgaard, T., 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68(3): 1312-1318. Thamdrup, B., Dalsgaard, T., Jensen, M. M., Ulloa, O., Farias, L., and Escribano, R., 2006. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr. 51(5): 2145-2156. Thullen, J., Sartoris, J., Nelson, S.M., 2005. Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance. Ecol. Eng. 25, 583–593. Thullen, J., Sartoris, J., and Nelson, S.M., 2005. Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance. Ecol. Eng. 25, 583–593. Toet, S., Bouwman, M., Cevaal, A., and Verhoeven, J.T.A., 2005. Nutrient removal through autumn harvest of Phragmites australis and Typha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. J. Environ. Sci. Health. 40:1133-1156. Toet, S., Huibers, L.H.F.A., Van Logtestijn, R.S.P., Verhoeven, J.T.A., 2003. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 501, 29–44. Treusch, A. H., Leininger, S., Kletzin, A., Stephan, C. S., Klenk, H. P., and Schleper, C., 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7:1985-1995. Truu, M., Juhanson, J., and Truu, J., 2009. Microbial biomass, activity and community composition in constructed wetland. Sci. Total Environ. 407:3958- 3971. Truu, M., Juhanson, J., and Truu,J., 2009. Microbial biomass, activity and community composition in constructed wetland. Sci. Total Environ. 407:3958- 3971. Tsiknia, M., Tzanakakis, V.A., and Paranychianakis, N.V., 2013. Insights on the role of vegetation on nitrogen cycling in effluent irrigated lands. Appl. Soil Ecol. 64, 104–111. Tunçsiper, B., 2009. Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland system. Desalination 247, 466–475. USEPA, 1999a, Treatment Wetland Habitat and Wildlife Use Assessment: Executive Summary. United States Environmental Protection Agency, EPA/832-S-99-001,38pp,. USEPA, 1999b, Free Water Surface Wetlands for Wastewater Treatment: A Technology Assessment. United States Environmental Protection Agency, EPA/832-S-99-002,172pp. USEPA, 1999c, Manual Constructed Wetlands Treatment of Municipal Wastewaters. United States Environmental Protection Agency, EPA/625/R-99/010,166pp. Valentine, D. L. 2007. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat. Rev. Microbiol. 5:316-323. Vitousek, P. M., Aber J. D., Howarth R.W., Likens, G.E., Matson, P. A., Schindler, D.W., Schlesinger, W.H., and Tilman, D. G., 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7(3), 737-750. Vymazal, J., 2005a. Constructed wetlands for wastewater treatment. Ecol. Eng. 25, 475–477. Vymazal, J., 2005b. Constructed wetlands with horizontal sub-surface flow and hybrid systems. Ecol. Eng. 25, 478–490. Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 380, 48–65. Vymazal, J., 2011a. Constructed wetlands for wastewater treatment: five decades of experience. Environ. Sci. Technol. 45, 61–69. Vymazal, J., 2011b. Enhancing ecosystem services on the landscape with created, constructed and restored wetlands. Ecol. Eng. 37, 1–5. Vymazal, J., 2011c. Long-term performance of constructed wetlands with horizontal sub-surface flow: ten case studies from the Czech Republic. Ecol. Eng. 37, 54–63. Vymazal, J., and Kröpfelová L., 2005. Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol. Eng. 25, 606–621. Vymazal, J., and Kröpfelová L., 2008a. Wastewater Treatment in Constructed Wetlandswith Horizontal Sub-Surface Flow. Springer Science, Dordrecht, Netherlands. pp.566. Vymazal, J., and Kröpfelová, L., 2008b. Is concentration of dissolved oxygen a good indicator of processes in filtration beds of horizontal-flow constructed wetlands? In: Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands, Ed. Vymazal J., Springer, Netherlands, 311-318. Vymazal, J., and Kröpfelová L., 2009. Removal of nitrogen in Constructed wetlands with horizontal sub-surfaceflow: a review. Wetlands 29, 1114–1124. Ward, B. B., Deveol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A., and Jayakumar, A., 2009. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461(3): 78-82. Watson, J.T., and Danzig, A.J., 1993. Pilot-Scale Nitrification Studies Using Vertical-Flow and Shallow Horizontal-Flow Constructed Wetland Cells. In: Moshiri, G.A. (Ed.), Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton, FL, pp. 301–313. Weber, K. P., Matthias, G., and Raymond, L., 2008. Assessment of changes in the microbial community of constructed wetland mesocosms in response to acid mine drainage exposure. Water Res. 42:180-188. Wen, L.S., Jiann, K.T., and Liu, K.K., 2008. Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science, 78: 694-704. Wiegert, R. G. and Evans, F. C., 1964. Primary production and the disappearance of dead vegetation on an old field in southeastern Michigan. Ecology 45:49-63. Xiao, Y.P., Hui W., Wang Q., Roh S.W., Shi X.Q., Shi J.H., and Quan Z.X. 2009. Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. Int. J. Syst. Evol. Microbiol. 59:2594-2598. Xie, S., Zhang, X., and Wang, Z., 2003. Temperature effect on aerobic denitrification and nitrification. J. Environ.Sci. 15, 669-673. Yamamoto, T., Takaki, K., Koyama, T., and Furukawa, K., 2006, Novel partial nitrification treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology. J. Biosci. Bioeng. 102, 497-503. Yun, H.-J., and Kim, D.J., 2003. Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor. J Chem. Technol. Biotechnol. 78:377-383. Zhang, C., Wang, J., and Liu, W., 2010. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol. Eng. 36, 62–68. Zhang, Y. X., Zhou, J. T., Guo,J. B., Zhang, X. H., Zhao, L. H., and Yuan, S. Z., 2010. Study on nitrite accumulation characteristics and nitrifying population dynamics at different growth environments. Int. J Biol. and Life Sciences 6:65-69. Zhu, G., Mike, S. M. J., Kuschk, P., Ettwig, K. F., and Yin, C., 2010. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl. Microbiol. Biotechnol. 86, 1043-1055. 中央氣象局, 2009, 1897-2008 年臺灣氣候變化統計報告。 行政院公共工程委員會。2006。建立人工濕地設置與操作作業程序及技術之研究417pp。 行政院環境保護署。2007。環境水質監測年報-河川篇(民國96年)。 呂易哲。2010。大漢溪人工濕地基礎生產力。國立中興大學生命科學系。碩士論文。 范嵐楓 2007有機物質蓄積對河口底棲化學性質、微生物群聚,以及底棲動物的衝擊 臺灣大學:海洋研究所 凃邑靜。2007。人工溼地生態淨化系統處理效能之探討-以彰化縣洋子厝溪為例。國立中興大學環境工程學系。在職專班碩士論文。 張文亮。2006。水生植物在人工濕地水質淨化功效之評估及管理。河川水質自然淨化工法規劃設計與建造講習會,行政院環境保護署。 張文亮、林裕彬、游進裕、徐貴新、徐爾烈、陳秋揚、袁孝維、尤少彬。2006。水質自然淨化工法操作維護彙編。行政院環境保護署。EPA-95-U1G1-02-101。 許原哲。2006。以人工溼地處理醫院污水處理廠放流水之研究。嘉南藥理科技大學環境工程與科學系。碩士論文。 陳星儒。2010。濕地氨氧化原核生物群集結構之分析。國立中興大學生命科學系。碩士論文。 陳韋志。2004。環境因子的變化對人工溼地硝酸去除功能的影響。嘉南藥理科技大學環境工程與科學系。碩士論文。 陳榮鐘。2006。應用礫石/碎石浸水式生物濾床削減河川含氮量之研究。國立中興大學環境工程學系碩士學位論文。 曾祥霖。2011。水生植物與大漢溪人工溼地污水處理能力關係之探討。國立中興大學生命科學系。碩士論文。 黃筱芬。2011。打鳥埤人工濕地脫硝與厭氧氨氧化作用。國立中興大學生命科學系。碩士論文。 黃蔚人。2003。淡水河系中上游河水中氮物種之時空變化。國立臺灣大學海洋研究所。碩士論文。 新北巿政府高灘地工程管理處。2012。101年度新北巿高灘地人工溼地經營管理與功能效益分析計畫-期中報告。美商傑明工程顧問公司。 楊遠波、顏聖紘、林仲剛。2001。臺灣水生植物誌。行政院農委會。 蔡若琳。2009。氨氧化細菌的特性及新式生物脫氮技術之探討。國立中山大學 生物科學系在職專班碩士論文。 羅錦忠。2005。都會區在槽式人工溼地淨化生活污水效益之探討-以台南市竹溪為例。嘉南藥理科技大學。環境工程與科學系暨研究所。
摘要: Constructed wetlands are being used throughout the world to remove nitrogen from wastewater and provide ancillary benefits of wetland ecosystems. However, a constructed wetland is a complex bioreactor. We need more scientific knowledge to enhance its nitrogen treatment efficiency. This study was conducted in two subtropical free surface constructed wetlands, Daniaopi constructed wetland (DNCW) and Hsin-Hai II constructed wetland (HSCW), which are situated in the floodplain of Da-Han Creek, a tributary in the Dan-Shuei River in northern Taiwan. We analyzed nitrogen removal efficiencies and various environmental factors, including vegetation succession, microbial composition, and environmental parameters, and then determined their nitrogen removal mechanisms. Our results were listed as follows: The DNCW and HSCW, which treating municipal wastewater and nitrogen removal efficiencies, were compared between the warm and cool seasons in northern Taiwan from March 2009 to August 2010. The nitrogen removal efficiencies in terms of area removal rates (ARR) were significantly positively regressed with the area loading rates (ALR) for ammonia nitrogen (NH3-N). The ARRs of NH3-N were 1.3 N g m-2 d-1 at DNCW and 1.0 N g m-2 d-1 at HSCW, whereas the concentration removal efficiency (CRE) was approximately 89% and 51%, respectively. Our results showed that no seasonal or water temperature effects on nitrogen removal in both constructed wetlands. Mass loading was a major factor in nitrogen removal. The warm climate of Taiwan suits for aquatic microbes and vegetation to remove nutrients in the constructed wetlands all year round. Only 50%of initial planted species survived in both constructed wetland after 4 years' operation. The volunteer vegetation altered the macrophyte composition. Plant coverages reached the highest during summer in both constructed wetland. DO, pH, and chlorophyll-a concentration in the water correlated significantly negatively with aquatic macrophyte coverages. The decreasing of DO might inhibit the nitrification. The effect of macrophyte coverage on NH3-N removal performance was uncertain. Our results suggested that the initial planting of macrophytes in constructed wetland was unnecessary to plant many species in an intensive density. We should retain a large open water area to raise DO concentration for nitrification. The open water area provided nature vegetation succession to achieve the optimum vegetative density and composition. The nitrifying and denitrifying microbial community, environmental factors, and ammonia oxidation potential rates (AOP) and denitrification rates were compared between constructed wetlands and natural wetlands. There were 12 sampling sites located in four wetlands including Shiu-Lang Bridge natural wetland (XL), Ku-Ting natural wetland (GT), DNCW and HSCW. The AOP rates in natural wetlands (0.024 mg N g dw-1 h-1) were higher than those in both constructed wetlands (DN, 0.012mg N g dw-1 h-1; HS, 0.005 mg N g dw-1 h-1). There were higher AOP rates during summer than winter. In total 27 species nitrifying microbes, 230 denitrifying microbes, and 1 anaerobic ammonia oxidizer were found at the 12 sampling sites. The microbial composition was significantly different between natural wetlands and constructed wetlands. The environmental factors that relate nitrifying and denitrifying microbes include total carbon (TC), sulfate (SO4-2), nitrate (NO3-N) and nitrite (NO2-N) concentrations in the water and Oxidation-Reduction Potential (ORP) in the soil. The correlation was particularly significant between denitrifying microbe richness indices and denitrification rates. These findings are consistent with the fact that high nutrients (e.g., NH3-N, NO3-N and organic carbon) systems supported higher denitrification activities. Denitrification is the major mechanism for constructed wetlands to remove nitrogen.
應用人工濕地去除水域環境中過量的氮,為可行且兼具生態效益之科技。如何提昇人工濕地的除氮效能,則需要對濕地複雜的氮轉換機制有更深入的瞭解。本研究主要研究大漢溪畔打鳥埤及新海二期兩處表面流人工濕地,分析其氮削減效能與影響因素,包含季節變化、植生演替及微生物組成與環境因子,以探討表面流人工濕地氮削減之機制。主要結果包括三大部分:1)打鳥埤與新海二期人工濕地的氨氮(NH3-N)單位面積削減效能(ARR)分別為1.3及1.0 g m-2 d-1,削減率(CRE)達89與51%,兩處濕地均具良好除氮效能。影響除氮效能主要因子為氮污染荷量,在暖季與冷季差異不明顯,顯示臺灣的氣候適合人工濕地全年操作;2)兩處人工濕地在運作4年後只有50%的栽種植物仍然存活,且植物組成已改變。人工濕地的植物覆蓋度以夏季最高,隨著植物覆蓋度增加,水體溶氧量(DO)、pH及葉綠素A降低。DO降低會影響硝化作用,但對於NH3-N去除效能的影響仍未有定論。建議人工濕地植物栽種之種類不宜過多過密,應保留較大的開放水域,除提昇水中DO以及促進硝化作用外,亦可透過植物自然演替達到濕地的最佳狀態。天然濕地硝化速率(0.024 mg N g dw-1 h-1)高於人工濕地 (DN, 0.012;HS, 0.005 mg N g dw-1 h-1),且夏季硝化速率較高。以16S DNA分析濕地底泥中之菌種與相對數量,共發現硝化菌27種,脫硝菌230種及1種厭氧氨氧化菌。天然濕地中菌種組成與人工濕地呈顯著差異,在人工濕地高氨氮負荷量的淨水單元中脫硝菌豐富度較高,影響濕地脫硝菌群集的因子包括水中總碳(TC)、SO4-2、NO3-N、NO2-N濃度及土壤氧化還原電位(ORP)。濕地中脫硝菌的豐富度與脫硝能力成顯著正相關,顯示脫硝作用為濕地氮削減的主要途徑,且在高NH3負荷的人工濕地中具較佳的脫硝能力。
URI: http://hdl.handle.net/11455/92147
文章公開時間: 2016-08-25
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.