Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92159
標題: 柏拉木幼苗斑葉機制與生態生理意涵之探討
Mechanisms and ecophysiological implications of foliar variegation in seedlings of Blastus cochinchinensis
作者: Yun-Shiuan Chen
陳運萱
關鍵字: 動物視覺影像系統
草酸鈣結晶
葉綠素螢光值
演化適應
異生性
葉片結構
野牡丹科
針束型結晶
陰性植物
蜂鬥草屬
最大光合作用效率
絨毛
AESIS
calcium oxalate crystal
chlorophyll fluorescence
evolutionary adaptation
heteroblasty
leaf structure
Melastomataceae
raphide
shade plant
Sonerila
the maximum quantum yield of PSII
trichome
引用: 陳家全、李家維、楊瑞森。1991。生物電子顯微鏡學。國科會精儀中心。新竹市。 黃增泉。2002。植物分類學:台灣維管束植物科誌。第二版。南天書局有限公司,台北市。台灣。 蔡淑華。2000。植物組織切片技術綱要。茂昌圖書有限公司。台北。 李治逸。2007。福山試驗林九種常見樹種的植食現象與葉部特性。國立臺灣大學生物資源暨農學院森林環境暨資源學系碩士論文。 徐邦達。2002。葉綠素螢光和PAM螢光儀原理及測量。光合作用研討會。p. 1-9。 Adler, L. S. 2000. Alkaloid uptake increases fitness in a hemiparasitic plant via reduced herbivory and increased pollination. The American Naturalist 156: 92-99. Allsopp, A. 1967. Heteroblastic development in vascular plants. Advances in Morphogenesis 6: 127-171. Aluru, M. R., F. Yu, A. Fu, and S. Rodermel. 2005. Arabidopsis variegation mutants: new insights into chloroplast biogenesis. Journal of Experimental Botany 57: 1871-1881. Brennan, E. B., S. A. Weinbaum, J. A. Rosenheim, and R. Karban. 2001. Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositonal and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae). Environmental Entomology 30: 1144-1149. Campitelli, B. E., I. Stehlik, and J. R. Stinchcombe. 2008. Leaf variegation is associated with reduced herbivore damage in Hydrophyllum virginianum. Botany 86: 306-313. Chang, L. W., J. L. Hwong, S. T. Chiu, H. H. Wang, K. C. Yang, H. Y. Chang, and C. F. Hsieh. 2010. Species composition, size-class structure, and diversity of the Lienhuachin Forest Dynamics Plot in a subtropical evergreen broad-leaved forest in central Taiwan. Taiwan Journal of Forest Science 25: 81-95. Chen, M. N., and T. S. Liao. 2006. Photosynthetic responses of four mangrove seedlings to light intensities and temperatures. Quarterly Journal of Forest Research 28: 1-14. Chiao, C. C., W. Y. Wu, S. H. Chen, and E. C. Yang. 2009. Visualization of the spatial and spectral signals of orb-weaving spiders, Nephila pilipes, through the eyes of a honeybee. The Journal of Experimental Biology 212: 2269-2278. Corlett, R. T. 1998. Bukit Timah: the history and significance of a small rain-forest reserve. Environmental Conservation 15: 37-44. Demmig, B., and O. Bjőrkman. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171-184. Demmig-Adams B., and W. W. III Adams.1992. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology 43: 599-626. Demmig-Adams, B., W. W. Ⅲ Adams, D. H. Barker, B. A. Logan, D. R. Bowling, and A. S. Verhoeven. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98: 253-264. Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565-581. Feng, F. L., and H. P. Lin. 2003. Analysis and restoration of landslide in HuiSun Forest experiment station after 921 Chi-Chi Earthquake. Quarterly Journal of Forest Research 25: 1-20. Fooshee, W. C., and Henny, R. J. 1991. Chlorophyll levels and anatomy of variegated and nonvariegated areas of Aglaonema nitidum leaves. Florida State Horticulture Society 103: 170-172. Gausman, H. W., W. A. Allen, and D. E. Escobar. 1974. Refractive index of plant cell walls. Applied Optics 13: 109-111. Genty, B., J. M. Briantais, and N. R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87-92. Givnish, T. J. 1990. Leaf mottling: relation to growth form and leaf phenology and possible role as camouflage. Functional Ecology 4: 463-474. Gould, K. 1993. Leaf heteroblasty in Pseudopanax crassifolius: functional significance of leaf morphology and anatomy. Annals of Botany 71: 61-70. Gupta, P. K. 2005. Cell and Molecular Biology 3rd. Rastogi Publications. New Delhi. Hara, N. 1957. Study of the variegated leaves, with special reference to those caused by air space. The Journal of Japanese Botany. 16: 86-101. Hong, L. W., and Y. N. Wang. 2003. Net photosynthetic productivity at different canopy layers of Cinnamomum camphora. Quarterly Journal of Chinese Forestry 36: 27-38. Hopkins, W. G., and P. A. Hüner. 2008. Introduction to Plant Physiology, 4th Edition. John Wiley and Sons, Inc. New York. USA. Horner, H. T. 2012. Peperomia leaf cell wall interface between the multiple hypodermis and crystal-containing photosynthetic layer displays unusual pit fields. Annals of Botany 109:1307-1315. Horner, H.T., S. Wanke, M. S. Samain. 2009. Evolution and systematic value of leaf crystal macropatterns: a phylogenetic approach in the genus Peperomia (Piperaceae). International Journal of Plant Sciences 170: 343-354. Huang, S. F., and T. C. Huang. 1993. Melastomataceae. p. 905-928. In: Bufford, D. E., C. E. Chang, S. M. Chaw., C. H. Chen, M. J. Deng, T. G. Hartley, P. C. Hoch, C. F. Hsieh, T. H. Hsieh, S. F. Huang, T. C. Huang, M. T. Kao, H. L. Li, A. W. Lievens, and S. C. Lin (eds.) Flora of Taiwan, 2nd ed. Vol. 3. National Taiwan University Press, Taipei. Hwong, J. L., S. C. Liaw., M. C. Chen, H. B. King, and S. Y. Lu. Review and analysis of forest hydrological researches in the Lien-Hua-Chi experimental forest. Journal of Experimental Forest 16: 95-114. Kahle, D., and H. Wickham. 2013. ggmap: spatial visualization with ggplot2. The R Journal 5: 144-161. Kaplan, I., G. P. Dively, and R. F. Denno. 2009. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. Ecological Applications 19: 864-872. Karavatas, S., and Y. Manetas. 1999. Seasonal patterns of photosystem II photochemical efficiency in evergreen sclerophyllous and drought semi-deciduous shrubs under Mediterranean field conditions. Photosynthetica 36: 41-49. Keng, H. 1990. The Concise Flora of Singapore. Singapore University Press Kent Ridge, Singapore. Kitao M., T. T. Lei, T. Koike, H. Tobita, and Y. Maruyama. 2000. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell and Environment 23: 81-89. Korth, K. L., S. J. Doege, S. H. Park, F. L. Goggin, Q. Wang, S. K. Gomez, G. Liu, L. Jia, and P. A. Nakata. 2006. Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiology 141: 188-195. Krause, G. H., S. Somersalo, C. B. Osmond, J. M. Briantais, and U. Schreiber. 1989 Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition, cold acclimation and freezing stress. Philosophical Transactions of the Royal Society of London B: Biological Sciences 323: 281-293. La Rocca N., N. Rascio, and P. Pupillo. 2011. Variegation in Arum italicum leaves. A structural-functional study. Plant Physiology and Biochemistry 49: 1392-1398. Lee, D. 2010. Nature's Palette: The Science of Plant Color. The University of Chicago, USA. Liu, H. Y., Y. P. Yang, S. Y. Lu, and B. L. Shin. 1998. Manual of Taiwan Vascular Plants, 3rd edn. Council of Agriculture, Executive Yuan. Taipei. Taiwan. Long, S. P., S. Humphries, and P. G. Falkowski. 1994. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology. 45: 633-662. Mauricio, R., and M. D. Rausher. 1997. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51: 1435-1444. Maxwell, K., and G. N. Johnson. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51: 659-668. Menke, W. 1962. Structure and chemistry of plastids. Annual Review Physiology 13: 27-44. Menke, W. 1990. Retrospective of a botanist. Photosynthesis Research 25: 77-82. Oghiakhe, S., L. E. N. Jackai, W. A. Makanjuola, and C. J. Hodgso. 1992.  Morphology, distribution, and the role of trichomes in cowpea (Vigna unguiculata) resistance to the legume pod borer, Maruca testulalis (Lepidoptera: Pyralidae).  Bulletin of Entomological Research 82: 499-505. Peng, S. E., C. W. Hu, and C. S. Chen. 2010. A practical protocol for biological   transmission electron microscopy. National Museum of Marine Biology and Aquarium, Pingtung County, Taiwan. Rohácek, K., and M. Barták. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37: 339-363. Schaefer, H. M., and G. Rolshausen. 2006. Plants on red alert: do insects pay attention? BioEssays 28: 65-71. Sheue, C. R., J. F. Ho, A. W. Yao, Y. H. Wu, J. W. Liu, S. Das, C. C. Tsai, H. A. Chu, P. Chesson, and M. S. B. Ku. 2015. A variation on chloroplast development: the bizonoplast and photosynthetic efficiency in the deep shade plant Selaginella erythropus. American Journal of Botany 102: 500-511. Sheue, C. R., S. H. Pao, L. F. Chien, P. Chesson, and C. I. Peng. 2012. Natural foliar variegation without costs? The case of Begonia. Annals of Botany 109: 1065-1074. Sheue, C. R., V. Sarafis, R. Kiew, H. Y. Liu, A. Salino, L. L. Kuo-Huang, Y. P. Yang, C. C. Tsai, C. H. Lin, J. W. H. Yong, and M. S. B. Ku. 2007. Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). American Journal of Botany 94: 1922-1929. Smith, A. P. 1986. Ecology of a leaf color polymorphism in a tropical forest: habitat segregation and herbivory. Oecologia 69: 283-287. Soltau, U., S. Dotterl, and S. Liede-Schumann. 2009. Leaf variegation in Caladium steudneriifolium (Araceae): a case of mimicry? Evolutionary Ecology 3:503-512. Spurr, A. R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26: 31-43. Taiz, L. and E. Zeiger. 2006. Plant Physiology and Development 4nd. Sinauer Associates, Inc., Sunderland, USA. Tan, H. T. W. 1995. A Guide to the Threatened Plants of Singapore. Singapore Science Centre, Singapore. Valverde, P. L., J. Fornoni, and J. Nunez-Farfan. 2001. Defensive role of leaf trichomes in resistance to herbivorous insect in Datura stramonium. Journal of Evolutionary Biology 14: 424-432. Wu, T. H., S. T. Tsai, C. A. Chiu, W. Wang, H. Y. Tzeng, and K. C. Lu. 2014. Soil seed band composition of Hui-Sun experimental forest station. Quarterly Journal of Forest Research 3: 85-100. Yamazaki, K. 2010. Leaf mines as visual defensive signals to herbivores. Oikos 119: 796-801. Young, T. P., M. L. Stanton, and C. E. Christian. 2003. Effects of natural and simulated herbivory on spine lengths in Acacia drepanolobium in Kenya. Oikos 101: 171-179. Yu, F., A. Fu, M. Aluru, S. Park, Y. Xu, H. Liu, X. Liu, A. Foudree, M. Nambogga, and S. Rodermel. 2007. Variegation mutants and mechanism of chloroplast biogenesis. Plant, Cell and Environment 30: 350-365. Zhang, Y., T. Hayashi, M. Hosokawa, S. Yazawa, and Y. Li. 2009. Metallic lustre and the optical mechanism generated from the leaf surface of Begonia rex Putz. Scientia Horticulturae 121: 213-217.
摘要: Natural foliar variegation is common in the forest understory. Two main mechanisms of variegation, pigmental (chemical color) and structural (physical color), have been reported. Some plants maintain variegation throughout their lives, but some display this feature at the juvenile stage only. Blastus cochinchinensis (Melastomataceae) is a common understory shrub in Taiwan and East Asia, with two types of seedlings, variegated seedlings and normal green seedlings (non-variegated). The variegated leaves display novel and strong variegated patterns on their adaxial surfaces, consisting of series of white spots or chains on a normal green leaf. The aims of this study are to reveal the mechanism of this remarkable variegation and its effects on ecophysiology in seedlings of B. cochinchinensis, and with field surveys to gain understanding of its adaptive significance by correlating variegation and herbivore damage. In addition, Sonerila heterostemon, a plant collected from Singapore also with a strong variegation pattern before flowering, is studied to better understand the variegated mechanism of Melastomataceae. The results attribute the variegation of B. cochinchinensis and S. heterostemon to at least three combined mechanisms including epidermal type, intercellular air space type and partial chlorophyll type. The adaxial epidermal cells of the white area of a variegated leaves are flate, and the adaxial epidermal cells of the green area of a variegated leaves and the normal green leaves are apophysis. The white area of a variegated leaves are thicker and have intercellular spaces between the adaxial epidermal cells and the upper mesophyll; the the green area of a variegated leaves and the normal green leaves are in tight contant with adaxial epidermal cells. The chloroplasts were fewer and smaller in the upper mesophyll, but their sizes were significantly larger in the lower mesophyll of the white area than the green area. The chloroplast ultrastructure, showing dense thylakoid membranes, shows no differences between the white area, the green area of a variegated leaf and the normal green leaf. Raphide-form oxalate crystals, which may increase light reflection and scattering, were found only in the adaxial epidermal cells of the white area of the variegated leaf of Blastus. Thus, a total of four variegation mechanisms were detected in the variegated leaf of Blastus, but it is unknown if this mechanism also occurs in Sonerila. In addition, the stomatal density on the abaxial leaf surface of the white area of Blastus was significantly lower than those of the green area and the normal green leaf. The normal green leaf has highest stomatal density. The chlorophyll concentration of Blastus in the variegated leaves was lower than the green leaves. This may be related to the smaller size and lower number of chloroplasts in the upper mesophyll of the white area. The maximum quantum yield of PSII (Fv/Fm) of an area of variegated leaf covering both white and green areas was close to that of the green area alone. The maximum quantum yield of the green area was significantly higher than that of the normal green leaf. Under low light (300 μmol photons m-2 s-1), the PSII quantum yield and the electron transport rate (ETR) of the variegated leaf were lower than the normal green leaf, but the non-photochemical quenching (NPQ) of the variegated leaf was higher than the normal green leaf. The result implies that the variegated leaves of the variegated seedlings have photoprotection under the low light conditions where the seedlings of Blastus grow naturally in forests. At high light, the ETR of the variegated leaf was higher than the normal green leaf, but with lower NPQ and a similar PSII quantum yield to the normal green leaf. The net photosynthetic rate (Pn) of variegated leaves was significantly lower than that of green leaves. Through twice repeated field surveys of 10 transects in the Huisun Forest Area and Lianhuachi Research Center, the percentage of variegated seedlings was found to be around 50% or more. Normal green leaves appear on average at the 8th node of the variegated seedling. Three types of variegation patterns were delineated: punctate, chain-like and lump, which consisted 1.5-24.8% leaf area. Such variegation patterns are extremely distinctive when viewed with the animal-eye specific imaging system (AESIS) to mimic the vision of honey bees. Notably, the herbivore damage in the variegated leaves was significantly lower than in the green leaves. One large multicellular trichome is located in the center of the white area of the variegated leaf, which may deter herbivores from landing and feeding. In addition, the density of glandular trichomes on the abaxial surface of the white area was significantly higher than those on the green area and the normal green leaves. No significant difference in the content of C%, N% and C/N ratio was found between the variegated leaf and the normal green leaf. Taken together, the striking variegated pattern, trichomes and crystals might contribute to the reduction of herbivore damage on the variegated leaf. This is the first report of variegation caused by multiple combined mechanisms, with chemical, structural mechanisms and crystal effects. The micromorphological and structural differences of the variegated leaf lead to slightly weak the performance of photosynthesis of the variegated seedling, but it gains better photoprotection under low light, and significantly reduced herbivore damage. The variegated leaves appear only in the first seven pair leaves of the variegated seedling, showing an adaptive significance of heteroblasty. About half the seedlings of Blastus found in the forest edge of relatively open habitats are variegated, suggesting that this variegation trait is stabilized in Blastus and has evolutionary significance.
植物自然斑葉(foliar variegation)形成的主要原因有兩大類,一與色素相關 (化學色);另一則和葉片結構有關(物理色)。有趣的是許多具自然斑葉的植物大都生長在森林底層較陰暗潮濕的環境,有些植物終其一生都保有斑葉特性,而有些則僅在幼苗時期才有斑葉的發生。柏拉木(Blastus cochinchinensis,野牡丹科)為臺灣森林下層常見的灌木,其幼苗有些可表現搶眼而明顯的斑葉特徵。本研究旨在探討柏拉木幼苗斑葉形成的機制及其對生態生理的影響與植食性動物(herbivore)的交互作用。此外,亦搭配採集自新加坡的蜂鬥草屬植物Sonerila heterostemon,用於輔助探討野牡丹科(Melastomataceae)斑葉的機制。 結果顯示柏拉木與S. heterostemon斑葉白斑形成的原因,至少結合了表皮型、細胞間隙型與部分葉綠素缺乏型三種機制。斑葉白區的葉片較厚且表皮細胞較為平坦;斑葉綠區和一般綠葉的表皮細胞則具有較多的突起。斑葉白區的較近軸面表皮細胞與上層的葉肉細胞之間具有細胞間隙;斑葉綠區則與上層的葉肉細胞(漏斗狀細胞)緊密貼合。雖然斑葉白區的上層葉肉細胞內具較少而小的葉綠體,但其下層海綿組織細胞的葉綠體則顯著較大,可能可藉以補償。在斑葉白區、斑葉綠區(斑葉幼苗)和一般綠葉(綠葉幼苗)的葉綠體均具發達的類囊膜,三者之間沒有差異。柏拉木斑葉白區上表皮具有針束狀結晶可能也會增加光線的反射,故柏拉木斑葉的白斑為同時由上述的四種機制共同表現,Sonerila 的白區是否亦具有晶體則需再確認。此外,柏拉木葉遠軸面的氣孔數在斑葉白區顯著低於斑葉綠區和一般綠葉,且斑葉綠區的氣孔數也顯著低於一般綠葉。 柏拉木斑葉的葉綠素濃度較一般綠葉略低,可能與斑葉白區的上層葉肉組織之葉綠體較少和小有關。最大光合作用效率(Fv/Fm)之比較結果顯示斑葉的斑區與一般綠葉没有差異,但斑葉綠區顯著大於一般綠葉。在低光時(PAR < 300 μmol photons m-2 s-1),斑葉的PSII光量子產量(PSII quantum yield)和電子傳遞速率(electron transport rate, ETR)較一般綠葉低;但其非光化學消散(non-photochemical quenching, NPQ) 則較一般綠葉高,顯示斑葉的光保護能力較一般綠葉高。在高光時(PAR > 300 μmol photons m-2 s-1),斑葉的電子傳遞速率高於一般綠葉;但其非光化學消散較低,PSII光量子產量則和一般綠葉無差別。於野外測量之斑葉淨光合作用速率(Pn)顯著低於一般綠葉。 野外調查顯示柏拉木斑葉幼苗在惠蓀林場(49%)和蓮華池(61%)兩個族群的組成比率均達ㄧ半或以上,平均在第八對幼葉時由斑葉轉變為綠葉。斑葉的白斑形式由少至多可分為點狀、鏈狀和塊狀,可佔葉片1.5 - 24.8%的面積。這些白斑形式由動物視覺影像系統(AESIS)觀察模擬蜜蜂的視覺發現斑葉白區是非常明顯的。由惠蓀林場和蓮華池兩個樣區共10條樣帶各兩次的調查結果顯示柏拉木斑葉幼苗受植食性生物取食的比例顯著低於一般綠葉幼苗。柏拉木斑葉近軸面之白斑中心具有一枝明顯的多列無分枝毛,可能會影響植食者取食和降落;且其遠軸面的短柄腺毛顯著高於斑葉綠區和一般綠葉。葉片營養的分析顯示斑葉和一般綠葉之間的碳百分比、氮百分比和碳氮比皆沒有顯著差異。推測這些斑點、絨毛和草酸鈣結晶均與斑葉幼苗受植食性生物取食的比例較低有關。 本文首次報導自然斑葉的發生可導因於結構與化學機制,再加上結晶的共同作用而形成斑葉上對比?烈的白斑。柏拉木幼苗的斑葉白區和斑葉綠區與一般綠葉在多項形態和結構上的差異,因而導致斑葉在整體上因而損失若干光合作用能力,但卻可以有更好的光保護能力,並顯著地降低被取食的機會。柏拉木斑葉的出現僅幼苗最初的第七對葉子前出現,表現出斑葉幼苗異生性的適應現象。其斑葉幼苗族群的比例約維持在50%左右,且多出現在林緣環境較開闊的棲地中,推測柏拉木的斑葉現象可能在演化的過程中穩定的留存下來,並具有適應的重要意涵。
URI: http://hdl.handle.net/11455/92159
文章公開時間: 2017-08-26
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.