Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9218
標題: 基於樹狀圖所架構之低複雜度部分傳輸序列用以降低正交分頻多工系統的峰均功率比值
A Low Complexity PTS Algorithm Based on the Tree Diagram for PAPR Reduction in OFDM Systems
作者: 劉興旻
Liu, Hsing-Min
關鍵字: 部分傳輸序列
PTS
正交分頻多工系統
OFDM Systems
出版社: 電機工程學系所
引用: [1] A. Agarwal and S. K. Patra, “Performance prediction of OFDM based DAB system using block coding techniques,” ICETECT. Conference., pp. 792–796, Mar. 2011. [2] C. W. Ting, C. L. Wei, Y. T. Chi and J. J. Shyh, “Low complexity synchronization design of an OFDM receiver for DVB-T/H,” IEEE Trans. Consumer. Electronics, vol. 55, pp. 408-413, May. 2009. [3] X. Wang, T. T. Tjhung and C. S. S. Ng, “Error probability performance of OFDMADSLsystems,” IEEE Global Telecommunications. Conference, vol 6. no. 2, pp. 3326-3331, 1998. [4] T. Jiang,W. Xiang, H. H. Chen, and Q. Ni, “Multicast broadcasting services support in OFDMA-based WiMAX systems,” IEEE Commun. Magazine., vol. 45, no. 8, pp. 78-86, Aug. 2007. [5] X. Li and L.J.J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Common. lett., vol. 2 ,pp. 131-133,May. 1998. [6] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999. [7] K.G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 104-120, Jan. 2000. [8] K.Bae, J.G.Andrews and E.J.Powers,“Adaptive active constellation extension algorithm for peak-to-average ratio reduction in OFDM ,” IEEE Common. Lett., vol. 14, pp. 39-41, Jan. 2010. 79 [9] S.A. Aburakhia,E.F. Badran and D.A.E Mohamed, “Linear Companding Transform for the Reduction of Peak-to-Average Power Ratio of OFDM Signals ,” IEEE Common. Lett., vol. 55, pp. 155-160, Mar. 2009. [10] S. Liu, Y. Zeng, and B. Hu, “Minimum spanning circle method for using spare subcarriers in PAPR reduction of OFDM systems,” IEEE Signal Process. Lett., vol. 15, no. 6, pp. 513-516, Jun. 2008. [11] D. W. Lim, H. S. Noh, H. B. Jeon, J. S. No, and D. J. Shin, “Multistage TR scheme for PAPR reduction in OFDM signals,” IEEE Trans. Broadcast., vol. 55, no. 2, pp. 300-304, Jun. 2009. [12] S. H. Han, J. M. Ciof, and J. H. Lee, “Tone Injection with hexagonal constellation for peak-to-average power ratio reduction in OFDM,” IEEE Commun. Lett., vol. 10, no. 9, pp. 646-648, Sep. 2006. [13] S. H. Han, J. M. Ciof, and J. H. Lee, “Tone Injection with hexagonal constellation for peak-to-average power ratio reduction in OFDM,” IEEE Commun. Lett., vol. 10, no. 9, pp. 646-648, Sep. 2006. [14] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping,” Elec. Lett., vol. 32, no. 22, pp. 2056-2057, 1996. [15] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, pp. 239-241, Jun. 2001. [16] R. J. Baxley and G. T. Zhou, “Comparing selected mapping and partial transmit sequence for PAR reduction,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 797-803, Dec. 2007. [17] L. Yang, K. K. Soo, Y. M. Siu, and S. Q. Li, “A low complexity selected mapping scheme by use of time domain sequence superposition technique for PAPR reduction in OFDM system,” IEEE Trans. Broadcast., vol. 54, no. 4, pp. 821-824, Dec. 2008. 80 [18] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average pwoer ratio by optimum combination of partial transmit sequences,” Elec. Lett., vol. 33, no. 5, pp. 368-369, Feb. 1997. [19] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun.Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001. [20] G. Lu, P.Wu, and C. Carlemalm-Logothetis, “Peak-to-average power ratio reduction in OFDM based on transformation of partial transmit sequences,” Elec. Lett., vol. 42, no. 2, pp. 105-106, Jan. 2006. [21] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM Signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83-86, Mar. 2006. [22] X.Qi,Y.Li and H.Hung, “A Low Complexity PTS Scheme Based on Tree for PAPR Reduction,” IIEEE Commun.Lett., vol. 16, pp. 1486-1488, Sep. 2012. [23] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, pp. 185-187, Apr. 2001.
摘要: 在本篇論文中,我們提出四種基於樹狀圖所架構之低複雜度部分傳輸序列演算法用以降低正交分頻多工系統的峰均功率比值。 這些被提出的演算法藉由搜尋不同線性區塊碼的樹狀圖來得到所有的相位因子,接著選擇一組具有最小峰均功率比值之正交分頻多工訊號來傳輸並且產生具有錯誤更正能力的訊息位元。 比較傳統的部分傳輸序列和我們的演算法,你將會明白用我們的演算法搜尋相位因子,則運算複雜度是比較低的。 因此,在我們的演算法中有兩個主要的優點,即降低搜索的複雜度和訊息位元提供額外的錯誤更正能力。
In this paper, we propose four low complexity partial transmitted sequences (PTS) algorithms that are based on the tree diagram for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The prorpsed algorithms can obtain all phase factors by searching the tree diagram of different $(n,k)$ linear block codes, and then select an OFDM signal with minimum PAPR for transmitting and transmit the side information with error correction. Compare conventional PTS (C-PTS) with our algorithms, you will know our algorithms which are low computational complexity for searching phase factors. Therefore, there are two main advantages in our algorithms , i.e. lower searching complexity and the side information provides extra error-correction property.
URI: http://hdl.handle.net/11455/9218
其他識別: U0005-1807201314373500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807201314373500
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.