Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92182
標題: 綠茶萃取物對結紮左前降支冠狀動脈的心肌梗塞大鼠提供抗氧化保護作用
Green tea extracts provide antioxidative protection on myocardial ischemia associated with ligation of anterior descending coronary artery in rats
作者: Yi-Min Su
蘇奕閔
關鍵字: 綠茶多酚
心肌梗塞
心臟重塑
心臟保護
自由基
氧化壓力
抗氧化作用
超氧化物歧化酶
第一型血紅素氧化酶
4-羥基壬烯酸
Caveolin
Akt
GSK3β
Green tea polyphenol
Myocardial infarction
Cardiac remodeling
Cardioprotection
Free Radicals
Oxidative stress
Antioxidant
Superoxide dismutases
Heme oxygenase-1
4-hydroxynonenal
Caveolin
Akt
GSK3β
引用: 1 Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea a review. Journal of the american college of nutrition 2006;25:79-99. 2 Chacko SM, Thambi PT, Kuttan R, et al. Beneficial effects of green tea: a literature review. Chinese medicine 2010;5:13. 3 Hsieh SR, Tsai DC, Chen JY, et al. Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation. Pflugers archiv - European journal of physiology 2009;458:631-42. 4 Liou YM, Hsieh SR, Wu TJ, et al. Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. Pflugers archiv - European journal of physiology 2010;460:1003-14. 5 Wang ZM, Zhou B, Wang YS, et al. Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. The american journal of clinical nutrition 2011;93:506-15. 6 Khan N, Mukhtar H. Tea polyphenols for health promotion. Life sciences 2007;81:519-33. 7 Sano M, Tabata M, Suzuki M, et al. Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection. Analyst 2001;126:816-20. 8 Crespy V, Williamson G. A Review of the health effects of green tea catechins in un Vivo animal models. Journal of nutrition 2004;134:3431-40. 9 Kris-Etherton PM, Keen CL. Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health. Current opinion in lipidology 2002;13:41-9. 10 Kuriyama S, Shimazu T, Ohmori K, et al. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan. The journal of the american medical association 2006;296:1255-65. 11 Townsend PA, Scarabelli TM, Pasini E, et al. Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. The journal of the federation of american societies for experimental biology 2004;13:1621-3. 12 Stephanou A. Role of STAT-1 and STAT-3 in ischaemia reperfusion injury. Journal of cellular and molecular medicine 2004;8:519-25. 13 McKay DL, Blumberg JB. The role of tea in human health: an update. Journal of the american college of nutrition 2002;1:1-13. 14 Sueoka N, Suganuma M, Sueoka E, et al. A new function of green tea: Prevention of lifestyle-related diseases. Annals of the New York academy of sciences 2001;928:274-80. 15 Moyers SB, Kumar NB. Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutrition reviews 2004;62:204-11. 16 Yang YC, Lu FH, Wu JS, et al. The protective effect of habitual tea consumption on hypertension. Archives of internal medicine 2004;164:1534-40. 17 Global status report on noncommunicable diseases. World health organization 2010. 18 Thygesen K, Alpert JS, White HD. Universal definition of myocardial infarction. European heart journal 2007;28:2525-38. 19 Luepker RV, Apple FS, Christenson RH, et al. Case definitions for acute coronary heart disease in epidemiology and clinical research studies: a statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 2003;108:2543-9. 20 Alpert JS, Thygesen K. Myocardial infarction redefined - a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. European heart journal 2000;21:1502-13. 21 Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. The new england journal of medicine 2012;366:54-63. 22 Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Journal of the american college of cardiology 2012;60:1581-98. 23 Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: the present and the future. Journa of american college of cardiology 2006;48:1-11. 24 Jaffe AS, Ravkilde J, Roberts R, et al. It's time for a change to a troponin standard. Circulation 2000;102:1216-20. 25 Sutton MGSJ, Sharpe N. Left ventricular remodeling after myocardial infarction : pathophysiology and therapy. Circulation 2000;101:2981-8. 26 Kramer CM, Sinusas AJ, Sosnovik DE, et al. Multimodality imaging of myocardial injury and remodeling. The jorunal of nuclear medicine 2010;51:107-21. 27 Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. Journal of biomedicine and biotechnology 2012;2012:936486. 28 Wulf D. Free radicals in the physisological control of cell function. Physiological reviews 2002;82:47-95. 29 Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual review of plant biology 2004;55:373-99. 30 Finkel T. Signal transduction by reactive oxygen species. The journal of cell biology 2011;194:7-15. 31 Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovascular research 2004;61:461-70. 32 Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 2003;108:1912-6. 33 Von Harsdorf R, Li PF, Dietz R. Signaling Pathways in Reactive Oxygen Species Induced Cardiomyocyte Apoptosis. Circulation 1999;99:2934-41. 34 Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOS (SOD3) gene structures evolution, and expression. Free radical biology medicine 2002;33:337-49. 35 Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Molecular aspects of medicine 2005;26:340-52. 36 Miller AF. Superoxide dismutases: active sites that save, but a protein that kills. Current opinion in chemical biology 2004;8:162-8. 37 Garlid KD, Costa AD, Quinlan CL, et al. Cardioprotective signaling to mitochondria. 2009;46:858-66. 38 Perrelli MG, Pagliaro P, Penna C. Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World journal of cardiology 2011;3:186-200. 39 Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 2008;118:1915-9. 40 Skyschally A, Schulz R, Heusch G. Pathophysiology of myocardial infarction protection by ischemic Pre- and Postconditioning. Heart and vessels 2004;19:19-22. 41 Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Current pharmaceutical design 2011;17:1818-24. 42 Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart failure reviews 2007;12:217-34. 43 Roth DM, Patel HH. Role of caveolae in cardiac protection. Pediatric cardiology 2011;32:329-33. 44 Cohen P, Frame S. The renaissance of GSK3. Nature reviews molecular cell biology 2001;2:769-76. 45 Juhaszova M, Zorov DB, Yaniv Y, et al. Role of glycogen synthase kinase-3beta in cardioprotection. Circulation research 2009;104:1240-52. 46 Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovascular research 2009;81:457-64. 47 Orsu P, Murthy BV, Akula A. Cerebroprotective potential of resveratrol through anti-oxidant and anti-inflammatory mechanisms in rats. Journal of neural transmission 2013;120:1217-23. 48 Christia P, Frangogiannis NG. Targeting inflammatory pathways in myocardial infarction. European journal of clinical investigation 2013;43:986-95. 49 Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovascular research 2002;53:31-47. 50 Sudhakar GK, Pai A, Lobo R, et al. Natural products as effective free radical scavengers. Mintage journal of pharmaceutical and medical sciences 2013;2:1-3. 51 Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. The american journal of clinical nutrition 2005;81:215-7. 52 Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell biochemistry and biophysics 2009;53:75-100. 53 Su SY, Hsieh CL. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia. Chinese medicine 2011;6:26. 54 Balázs V. Anti-inflammatory role of natural polyphenols and their degradation products. Severe sepsis and septic shock - understanding a serious killer 2012:379-410. 55 Tsai TH, Tsai PJ, Ho SC. Antioxidant and anti-inflammatory activities of several commonly used spices. Journal of food science 2005;70:93-7. 56 Wilson EA, Demmig-Adams B. Antioxidant, anti-inflammatory, and antimicrobial properties of garlic and onions. Nutrition and food science 2007;37:178-83. 57 Santangelo C, Vari R, Scazzocchio B, et al. Polyphenols, intracellular signalling and inflammation. Ann Ist Super Sanità 2007;43:394-405. 58 Hsieh SR, Hsu CS, Lu CH, et al. Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3beta/caveolin signalling in H9c2 rat cardiomyoblasts. Journal of biomedical science 2013;20:86. 59 Chen WC, Hsieh SR, Chiu CH, et al. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts. Journal of biomedical science 2014;21:56. 60 Yang J, Moravec CS, Sussman MA, et al. Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 2000;102:3046-52. 61 Davidson SM, Hausenloy D, Duchen MR, et al. Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. The international journal of biochemistry and cell biology 2006;38:414-9. 62 Massague J. TGFbeta signalling in context. Nature reviews Molecular cell biology 2012;13:616-30. 63 Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular research 2007;74:184-95. 64 Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. Journal of molecular and cellular cardiology 2011;51:600-6. 65 Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007;49:241-8. 66 Sun Y. Oxidative stress and cardiac repair/remodeling following infarction. The american journal of medical sciences 2007;334:197-205. 67 Mishra J, Dash AK, Dash Dk. Medicinal and therapeutic potentialities of green tea (Camellia sinensis). World journal of pharmacy and pharmaceutical sciences 2013;2:4745-63. 68 Mandel S, Weinreb O, Amit T, et al. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. Journal of neurochemistry 2004;88:1555-69. 69 Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Critical reviews in food science and nutrition 2003;43:89-143. 70 Seifried HE, Anderson DE, Fisher EI, et al. A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of nutritional biochemistry 2007;18:567-79. 71 Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature protocols 2010;5:51-66. 72 Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annual review of pharmacology and toxicology 2010;50:323-54. 73 Wu ML, Ho YC, Lin CY, et al. Heme oxygenase-1 in inflammation and cardiovascular disease. American jorunal of cardiovascular disease 2011;1:150-8. 74 Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Experimental geronotology 2009;44:625-33. 75 Chapple SJ, Cheng X, Mann GE. Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox biology 2013;1:319-31. 76 Dalleau S, Baradat M, Gueraud F, et al. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell death and differentiation 2013;20:1615-30. 77 Butterfield DA, Dalle-Donne I. Redox proteomics. Antioxidant and redox signaling 2012;17:1487-9. 78 Go YM, Jones DP. The redox proteome. The journal of biological chemistry 2013;288:26512-20. 79 Bachi A, Dalle-Donne I, Scaloni A. Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chemical reviews 2013;113:596-698. 80 Rinalducci S, Murgiano L, Zolla L. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Journal of experimental botany 2008;59:3781-801. 81 Venditti P, Di Stefano L, Di Meo S. Mitochondrial metabolism of reactive oxygen species. Mitochondrion 2013;13:71-82. 82 Chen AF, Chen DD, Daiber A, et al. Free radical biology of the cardiovascular system. Clinical science 2012;123:73-91. 83 Parton RG, Simons K. The multiple faces of caveolae. Nature reviews molecular cell biology 2007;8:185-94. 84 Fridolfsson HN, Roth DM, Insel PA, et al. Regulation of intracellular signaling and function by caveolin. The journal of the federation of american societies for experimental biology 2014. 85 Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasclar research 2006;70:240-53. 86 Phukan S, Babu VS, Kannoji A, et al. GSK3beta: role in therapeutic landscape and development of modulators. British journal of pharmacology 2010;160:1-19. 87 Song JQ, Teng X, Cai Y, et al. Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis 2009;14:1299-307.
摘要: Containing large amounts of polyphenol compounds, green tea could help scavenge free radicals and reduce oxidative damage such as to protect from cardiovascular diseases, cancer and chronic diseases. Myocadial infarction (MI) resulting from myocardial ischemia often undergoes cardiac remodeling process, by which secondary damage to the heart might occur by generating excessive reactive oxygen species (ROS) and free radicals. Previously, we have established MI animal models associated with ligation of the left anterior descending coronary artery (LAD) in rats, and used that model to demonstrate that tube feeding green tea extract (GTE) could reduce heart tissue remodeling, ventricular hypertrophy, infarct size, as well as significantly improve the left ventricular functions. In this thesis, my study aimed to further understand the mechanism of GTE acting to ameoliate myocardial ischemia induced oxidative stress by using rats with sham control group (only thoracotomy), post MI group with GTE treatment or with water (H2O group). After three days without GTE feeding, cTnI was found significantly reduced in myocardial cells, suggesting cTnI degradation occurring in acute myocardial ischemia injured cells. In contrast, gelsolin (GSN), an actin severing protein, was found increased in ischemic myocardial cells from post MI rats. This is consistent with the role of GSN in cardiac apoptosis occurring in post MI hearts. Using myocardial cells freshly isolated from rat hearts showed that EGCG, a major green tea polyphenol, efficienly reduced formation of free radicals in cells disturbed by 100 µM H2O2. In addition, the rate of intracellular free radicals in the GTE groups (for three days, two weeks, and three weeks) all became slower in comparison with the H2O groups. The increase of GTE feeding time also increased efficiency in reducing the rate of free radical production in post MI cells. To assess antioxidative capacity of GTE in myocardial ischemia injured cells, the level of superoxide dismutase (SOD) activity in myocardial tissues was measured. Results showed that GTE treatment could help maintain the activity of SOD in cells at the remote region of the heart in post MI rats for the time periods from three days to three weeks, while in H2O group the SOD activity was found significantly decreased in post MI rats. However, the measured SOD mRNA level in myocardial tissues was not significantly different in control, post MI rats with or without GTE treatments. For measuring another antioxidatant enzyme, heme oxygenase-1 (HO-1), the mRNA level was found significantly reduced for the H2O group, while GTE treatment protecting the decrease of mRNA expression in the post MI myocardium. To further examine oxidative stress in cardiac cells, 4-hydroxynonenal (4HNE) post-translational modification on myocardial proteins were determined. Results showed that 4-HNE modified proteins were increased for the H2O group but decreased for the GTE group, as compared to the sham controls. Proteomic analysis also revealed that post MI animals for three days or three weeks significantly altered the myocardial proteins characterized with cytoskeletal function and energy metabolism as compred with control and post MI rats with GTE treatment. Finally, the potential signaling pathways by caveolin, Akt and GSK3β dependent events were determined for the involenent in the GTE-mediated antioxidation against the myocardial ischemia stress in post MI rats. Taken together, the data found in this study suggested that the caveolin, Akt and GSK3β signaling pathways might act to modulate the antioxidaticve protection of GTE against the myocardia ischemia induced oxidative stress in the heart.
利用綠茶研究心血管疾病、癌症和慢性疾病的許多相關實驗證實綠茶具有抗氧化功效,因為含有大量多酚化合物幫助細胞清除自由基,減少氧化傷害,進而保護健康細胞。心臟缺血傷害導致心肌梗塞,後期心臟重塑過程對心臟組織造成二次傷害,伴隨著過量活性氧化物與自由基產生。本實驗室先前研究建立結紮左前降支冠狀動脈心肌梗塞大鼠,利用心肌梗塞大鼠動物模式探討灌食綠茶萃取物的功效,發現綠茶萃取物有效降低心臟組織重塑的傷害、避免心室擴大、減少梗塞區域,以及顯著改善左心室收縮功能 欲瞭解綠茶萃取物如何對心肌梗塞大鼠心臟給予保護效果。因此,本研究利用相同模式結紮左前降支冠狀動脈的心肌梗塞大鼠,比較控制組(只有進行開胸手術未結紮, Sham) 、心肌梗塞大鼠灌食綠茶萃取物組(GTE) 或灌食水組 (H2O) 探討綠茶對於心臟缺血傷害的保護機制。手術後灌食有效劑量綠茶萃取物 (400 mg/kg) 或單純餵水的灌食時間為 3 天、2 週和 3 週。實驗結果顯示:大鼠於手術後灌食 3 天時間點, H2O 組減少心肌細胞內 cTnI 蛋白,可能是缺血傷害之心肌細胞中 cTnI 產生裂解。另外心臟缺血傷害的細胞內增加肌絲調控蛋白 GSN 表現量,可能會導致心臟缺氧傷害誘發的細胞凋亡。利用萃取控制組心肌細胞的實驗,證實兒茶素 EGCG 降低 100 µM H2O2 所誘發的胞內自由基產生速率。犧牲各時間點的實驗動物後,再萃取心肌細胞來檢測 100 µM H2O2 溶液刺激產生氧化壓力下胞內自由基生成的變化速率。實驗結果顯示: GTE 組在氧化壓力下產生的胞內自由基速率較慢;且隨著增加灌食綠茶萃取物的時間顯著減少胞內自由基產生的速率。另外評估心臟細胞抗氧化能力,利用偵測超氧化物歧化酶 (SOD) 活性,結果發現:隨著增加灌食時間 GTE 組相較 H2O 組更能維持超氧化物歧化酶活性;但是 SOD mRNA 基因並沒有顯著差異。然而,第一型血紅素氧化酶 (HO-1) mRNA 基因,在 H2O 組心臟非梗塞區域相對的基因表現量顯著減少。分析心臟細胞內 4-羥基壬烯酸 (4HNE) 後修飾氧化蛋白,發現 H2O 組心臟細胞蛋白明顯被 4-HNE所氧化修飾,而 GTE 組減少蛋白氧化修飾。繼由蛋白質體學分析,灌食 3天和 3 週的實驗動物組與控制組具明顯差異的蛋白,大多與細胞骨架和能量代謝等功能相關。最後探討綠茶萃取物對心臟細胞抗氧化相關訊息路徑;檢測實驗動物心臟細胞內 Caveolin 、 Akt 和 GSK3β 蛋白表現量與蛋白磷酸化與去磷酸化活性 結果發現 GTE 組非梗塞區 CAV3 明顯增多;。pAkt/Akt 比值具有趨勢變化,在 H2O 組梗塞區域顯著減少; pGSK3β(Ser9) /GSK3β 比值,於灌食 3 週時間點發現, GTE 組相較 H2O 組顯著增加。綜觀以上結果證實綠茶萃取物可經由影響 Caveolin 、 Akt 和GSK3β 訊息路徑對心臟缺血傷害的心肌組織提供抗氧化保護作用。
URI: http://hdl.handle.net/11455/92182
文章公開時間: 2018-07-15
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.